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Abstract. We discuss the construction of “hybrid” analytic spaces that con-

tain both Archimedean and non-Archimedean information, and their applica-
tions to various problems involving degenerations, with particular emphasis on

degenerations of Calabi-Yau varieties.

Introduction

1. Berkovich spaces over Banach rings

Among the different approaches to non-Archimedean geometry (see [Con08] for
a nice introduction), the one by Berkovich [Berk90] has the interesting feature that
the basic definitions make sense over general Banach rings.

Namely, to any Banach ring (A, ‖·‖) is associated a space, the Berkovich spectrum
M(A) consisting of all multiplicative seminorms on A bounded by the given norm
on A. It has a natural topology, namely the weakest one in which the evaluation
map M(A) 3 | · | → |a| ∈ R+ is continuous for all a ∈ A. Excluding the case of the
zero ring, the Berkovich spectrum M(A) is a nonempty compact Hausdorff space.

Now consider a schemeX of finite type overA. To this data, Berkovich in [Berk09]
associates a continuous map

XAn →M(A) = (SpecA)An

of topological spaces1 satisfying various nice properties. For example, XAn is locally
compact and locally path connected. It is compact when X is proper.

If X is affine, that is, X = SpecB for a finitely generated A-algebra B, then XAn

is the set of multiplicative seminorms on B whose restrictions to A are bounded. In
general, XAn is obtained by gluing the analytifications of open affine subschemes
of X.

We now list several examples of the analytifications procedure above.

1.1. Complex analytic spaces. When A = C is the field of complex numbers,
equipped with the usual (Archimedean) norm | · |∞, then the analytification XAn

of a scheme of finite type over C is the complex analytic space Xhol associated to
X. As a set, Xhol equals X(C), the set of C-valued points of X. The functor
X → Xhol has various nice properties known as GAGA [Ser55].

Date: May 25, 2017.
1The superscript in XAn refers to analytification, but at this point we only consider topological

spaces. See [Poi10, Poi13] for some properties of the naturally defined structure sheaf on XAn.
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1.2. Berkovich spaces. Now assume that A is a non-Archimedean field k, i.e.
a field equipped with a multiplicative non-Archimedean norm. In this case, XAn

is a (good, boundaryless) k-analytic space in the sense of [Berk90, Berk93]. Such
spaces are usually simply called Berkovich spaces, and one writes Xan instead of
XAn. The functor X → Xan also satisfies various GAGA properties [Berk90, §3].

There are two non-Archimedean fields of particular relevance for complex degen-
erations. First, we can equip C with the trivial norm | · |0, in which |a|0 = 1 for all
a ∈ C∗. Second, given r ∈ (0, 1), we can equip the field C((t)) of complex Laurent
series with the following norm |f | = rord0(f), where ord0(

∑
i ait

i) = min{i | ai 6= 0}.

1.3. The hybrid norm on C. Denote by Chyb the Banach ring (C, ‖·‖hyb), where
the hybrid norm is defined as

‖ · ‖hyb := max{| · |0, | · |∞},
with | · |0 the trivial absolute value and | · |∞ the usual absolute value.

The elements of the Berkovich spectrum M(Chyb) are of the form | · |ρ∞ for
ρ ∈ [0, 1], interpreted as the trivial absolute value | · |0 for ρ = 0. This yields a
homeomorphism M(Chyb) ' [0, 1].

1.4. Hybrid geometry over C. If X is a scheme of finite type over C, we denote,
as above, by Xhol its analytification with respect to the usual absolute value | · |∞,
by Xan

0 its analytification with respect to the trivial absolute value, and by Xhyb

its analytification with respect to the hybrid norm ‖ · ‖hyb.
The structure morphism X → SpecC gives rise to a continuous map

λ : Xhyb →M(Chyb) ' [0, 1].

The fiber λ−1(ρ) is equal to the analytification of X with respect to the multiplica-
tive norm |·|ρ∞ on C. In particular, we have canonical identifications λ−1(1) ' Xhol

and λ−1(0) ' Xan
0 . For 0 < ρ ≤ 1, the fiber λ−1(ρ) is also homeomorphic to Xhol.

In fact, we have a a homeomorphism

λ−1 ((0, 1]) ' (0, 1]×Xhol,

see [Berk09, Lemma 2.1]. See Figure 1 for an illustration of (P1)hyb.

1.5. The hybrid circle. Now consider the hybrid circle of radius r ∈ (0, 1), that
is, Chyb(r) := {|t| = r} ⊂ A1,hyb = (SpecC[t])hyb. By [Poi10, Prop 2.1.1], this is
compact and realized as the Berkovich spectrum of the Banach ring

Ar :=

{
f =

∑
α∈Z

cαt
α ∈ C((t))

∣∣∣∣ ‖f‖hyb :=
∑
α∈Z

‖cα‖hybrα < +∞

}
.

Since ‖cα‖hyb ≥ |cα|∞, every f ∈ Ar defines a continuous function fhol on the

punctured closed disc D
∗
r that is holomorphic on D∗r and meromorphic at 0. In

fact, there is a homeomorphism Dr
∼→M(Ar) ' Chyb(r), that maps z ∈ Dr ⊂ C

to the seminorm on Ar defined by

|f | =

{
rord0(f) if z = 0

r
log |fhol(z)|∞

log |z|∞ otherwise,
(1.1)

and via which the map λ : Chyb(r) → [0, 1] is given by λ(z) = log r
log |z|∞ , see [BJ17,

Proposition A.4].
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0 1 ρ

Figure 1. The hybrid space P1,hyb defined as the analytification
of the complex projective line with respect to the hybrid norm
‖ · ‖hyb on C, together with the canonical map λ : P1,hyb → [0, 1].
The fiber λ−1(0) is the analytification of P1 with respect to the
trivial norm, and looks like a cone over P1(C). All the other
fibers are homeomorphic to a sphere. The points on top form a
continuous section of λ. The smaller circle in the fiber λ−1(ρ) is of
radius e−1/ρ; these circles converge as ρ → 0 to a unique point in
the fiber λ−1(0).

1.6. Geometry over the hybrid circle. Let now X be a scheme of finite type
over Ar for some r ∈ (0, 1). We will associate to X three kinds of analytic spaces.

First, since X is obtained by gluing together finitely many affine schemes cut
out by polynomials with coefficients holomorphic on D∗r ⊂ C and meromorphic at
0, we can associate to X in a functorial way a complex analytic space Xhol over
D∗r , which we call its holomorphic analytification.

Second, since Ar is contained in C((t)), we may also consider the base change
XC((t)) and its non-Archimedean analytification Xan

C((t)) with respect to the non-

Archimedean absolute value rord0 on C((t)).
Finally, denote by Xhyb the analytification of X as a scheme of finite type over

the Banach ring Ar, and call it the hybrid analytification of X. It comes with a
continuous structure map

π : Xhyb → Dr 'M(Ar),

and we have canonical homeomorphisms

π−1(0) ' Xan
C((t)) and π−1(D∗r) ' Xhol (1.2)

compatible with the projection to Dr.

2. A hybrid space arising from degenerations

We now explain how the last construction above naturally appears in the context
of certain degenerations. Consider a projective family

π : X → D∗ (2.1)

of complex projective varieties. By this we mean that X is given as a closed
subspace of the complex manifold PNC×D∗ for someN ≥ 1, cut out by homogeneous
equations whose coefficients are holomorphic functions on D∗ and meromorphic at
0 ∈ D. Here D denotes the complex unit disc in C and D∗ = D \ {0}.

Now fix any r ∈ (0, 1) and consider the Banach ringAr above. Every holomorphic
function on D∗ that is meromorphic at 0 ∈ D defines a unique element of Ar, so the
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base change XAr
is a well-defined projective scheme over Ar. The analytification

procedure above therefore gives rise to a map

π : Xhyb
Ar
→M(Ar) ' Dr. (2.2)

Here we are abusing notation, since π already denoted the projection in (2.1).
However, one can show that the restrictions of (2.1) and (2.2) to D∗r agree. For

simplicity, we simply write Xhyb instead of Xhyb
Ar

. After rescaling the discs, we have
effectively extended (2.1) by inserting the Berkovich space Xan

C((t)) as the central

fiber.

3. Applications

There are several instances where hybrid spaces can be used to study complex
degenerations. For example:

(1) First, we have Berkovich’s work on limit mixed Hodge structures [Berk09].
More precisely, Berkovich identified the weight zero part of the above struc-
tures as coming from non-Archimedean geometry. We shall not discuss this
further here, but rather refer to the original paper.

(2) The hybrid space Xhyb was used in [Jon16] to prove that the rescalings
of amoebas associated to subvarieties of toric varities, converge to the as-
sociated tropical varieties. This was proved much earlier, using different
methods, by Mikhalkin [Mik04] and Rullg̊ard [Rul01] in the case of hyper-
surfaces.

(3) Hybrid spaces can be used in complex dynamics to study the boundary of
the parameter spaces of rational maps of the Riemann sphere. This was
done at least implicitly by Kiwi and DeMarco-Faber [Kiw06, Kiw15] and
explicitly by Favre [Fav16], who moreover studied the situation in higher
dimensions.

(4) Degenerations occur naturally when studying the existence of special met-
rics in Kähler geometry, such as Kähler-Einstein metrics. The construction
of hybrid spaces inspired the work in [BHJ16] and [BBJ15].

(5) Finally, hybrid spaces can be used to study degenerating families of volume
forms, as in [BJ17]. This will be briefly explained in the next section, in
the case of Calabi-Yau varieties.

4. Degenerations of Calabi-Yau varieties

We now explain how degenerations of Calabi-Yau varieties can be studied using
hybrid spaces. Consider a projective family

π : X → D∗ (4.1)

of Calabi-Yau varieties, of relative dimension n. Thus we have the same situation
as in §2, with the additional information that the relative canonical bundle KX/D∗

is trivial. Applying the procedure above, and rescaling the discs, we extend (4.1)
to a hybrid space

π : Xhyb → D

with the Berkovich space Xan
C((t)) as the central fiber.

Since XC((t)) is a Calabi-Yau variety, the analytification Xan
C((t)) contains a natural

subset Sk(X), the Kontsevich-Soibelman skeleton first introduced in [KS06] and
studied in detail in [MN15, NX16]. It is a simplicial complex of dimension ≤ n.
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The skeleton comes equipped with a natural integral affine structure. This allows
us to define Lebesgue measure on Sk(X). More precisely, each simplex σ in Sk(X)
has a uniquely defined (normalized) Lebesgue measure Lebσ

Of particular interest is the case when the skeleton has dimension n: in this case
X is said to be maximally degenerate.

Fix a trivializing section η ∈ H0(X,KX/D∗). This is unique up to multiplication
with a holomorphic function on D∗, meromorphic at 0. The restriction ηt := η|Xt

is a non-vanishing holomorphic n-form, and induces a smooth positive measure

νt := in
2

ηt ∧ ηt.

on Xt. The following result is proved in [BJ17].

Theorem 4.1. There exist κ ∈ Q and c > 0 such that the following holds:

(i) νt(Xt) ∼ c|t|2κ(log |t|−1)d, where d = dim Sk(X);
(ii) the rescaled measures

µt := |t|−2κ(log |t|−1)−d

converge, as t → 0, to a Lesbegue type measure µ0 on Sk(X) in the weak
topology of measures on Xhyb; more precisely, µ0 is of the form

µ0 =
∑
σ

cσ Lebσ,

where σ runs over simplices of Sk(X) of maximal dimension d = dim Sk(X),
and cσ > 0;

(iii) if X is maximally degenerate and admits semistable reduction, then µ0 is
proportional to Lebesgue measure on Sk(X).

Remark 4.2. Some comments are in order.

(i) After multiplying η by a function of t, we may assume c = 1 and κ ≥ 0.
(ii) When X is maximally degenerate, the assumption on semistable reduction

is always satisfied after a base change t 7→ tm for some m ≥ 1.
(iii) Convergence results similar to the ones in the theorem were earlier proved

in [CLT10], but in a situation where the limit measure lives on the central
fiber of an snc model as defined below.

The idea of the proof is as follows. Instead of working on the hybrid space, we
fix a holomorphic model of X, i.e. manifold X with a proper flat map X → D such
that the preimage above D∗ is isomorphic to X. Assume that X is an snc model,
i.e. the central fiber X0 is an snc divisor. One can then construct a hybrid space
X hyb, defined as a set as the disjoint union

X hyb := X t∆X ,

where ∆X is the dual complex of X , and equipped with a natural topology. This
construction essentially goes back to Morgan and Shalen [MS84] and even to work
by Bergman [Berg71]. The skeleton Sk(X) is then a subcomplex of ∆X , and one
proves the analogues of (i)–(iii) on the space X hyb using rather explicit computa-
tions in polar coordinates. This can be shown to imply the convergence result in
the theorem, since the hybrid space Xhyb is naturally homeomorphic to the inverse
limit of the spaces X hyb, when X ranges over all snc models. We refer to [BJ17]
for details.
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5. Towards the Kontsevich-Soibelman conjecture

An influential conjecture by Kontsevich and Soibelman [KS06] (versions of which
were stated also by Gross–Wilson and Todorov) concerns the metric degeneration
of Calabi-Yau varieties. Consider a maximally degenerate family X → D∗ as
above, and fix a relatively ample line bundle L on X. For t ∈ D∗, let ωt ∈ c1(Lt)
be the unique Ricci-flat metric on Xt in the first Chern class of Lt := L|Xt

, the
existence of which is due to Yau [Yau78]. This turns Xt into a metric space (Xt, dt),
where we further normalize dt so that the diameter of Xt is one. The Kontsevich-
Soibelman conjecture now states that the family of metric spaces (Xt, dt) converges
in the Gromov-Hausdorff topology to the essential skeleton Sk(X) endowed with a
piecewise smooth metric of Monge-Ampère type. The latter means that the metric
is locally given as the Hessian of a convex function satisfying a real Monge-Ampère
equation.

The theorem above on the convergence of measures onXhyb is at least compatible
with the Kontsevich-Soibelman conjecture. Let us be more precise. The Ricci flat
metric ωt on each Xt can be obtained as the curvature form of a metric φt on
Lt satisfying a Monge-Ampère equation involving the measure νt. Similarly, on
the central fiber it follows from [BFJ15, BG+16] (see also [KT00, Liu11, YZ13])
that there exists a metric φ0 on the line bundle Lan

C((t)), unique up to scaling, that

solves the non-Archimedean Monge-Ampère equation MA(φ0) = µ0, where µ0 is
normalized Lebesgue measure on Sk(X).

It is now tempting to approach the Kontsevich–Soibelman conjecture by studying
the behavior of φt as t → 0. More precisely, the metrics φt (suitably normalized)
define a metric φhyb on the hybrid line bundle Lhyb over Xhyb, and it would be
interesting to see if φhyb is a continuous metric. Note that this is not obvious since
there is no a priori reason why the weak continuity at t = 0 of t 7→ µt would imply
continuity of the solutions t 7→ φt. Further, to prove the Kontsevich-Soibelman
conjecture, one probably needs to estimate some derivatives of φt, which may be
even harder. Nevertheless, the convergence of measures gives some indication that
the Kontsevich-Soibelman conjecture may be true.
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families of volume forms. J. Éc. polytech. Math. 4 (2017), 87–139.



NON-ARCHIMEDEAN LIMITS 7

[BG+16] J. I. Burgos Gil, W. Gulber, P. Jell, K. Künnemann and F. Martin. Differentia-
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