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This talk reports on joint work with Joseph Rabinoff and David Zureick-Brown.

1. Statement of Results

Theorem 1.1. Let C/Q be a nice (smooth, proper, geometrically connected) curve of genus

g. Let r = rank JC(Q) (with Abel–Jacobi map ι : C ↪→ JC given by a point x0 ∈ C(Q)).

Then we have

(1) If r ≤ g − 3, #C(Q) ≤ 84g2 − 98g + 28,

(2) Unconditionally, #ι−1(Jtors(Q)) ≤ 84g2 − 98g + 28

(3) For p prime, pick C /OCp stable and suppose g ≥ 2g(Ci) + nCi
for all components Ci

of the special fiber C0, where nCi
is the number of nodes on Ci, then #ι−1(Jtors(Q)) ≤

N(g) where N(g) is an explicit, albeit exponential constant.

The three parts of the theorem refer to rational points, rational torsion, and geometric

torsion.

The main idea of the proof is to bound the size of a certain set Z. We form Can, the

Berkovich analytification of C. We try to find a collection of basic wide open sets Ui ⊂ Can

and analytic functions fi on Ui such that

Z ⊆
⋃(
{fi = 0} ⊆ Ui

)
.

The sets Ui need not cover Can. In the two rational cases above, we need only cover arith-

metically relevant points, so it suffices that C(Qp) be covered by Ui.

2. Chabauty Method

The functions fi are constructed by the Chabauty–Coleman method. Let Z be the set

of rational or torsion points on C. The Jacobian JC is an Abelian variety and possesses a

logarithm,

Log : JC(Cp)→ Lie JC(Cp) ∼= Cg
p.

The relevant points may land in a subspace V ⊂ Lie JC(Q). To find the rational points,

we use the p-adic fact that

dim Span(Log(JC(Q))) ≤ rank JC(Q).

Therefore, there exists V ⊆ Lie JC(Cp) such that Log(J(Q)) ⊆ V. For the torsion points,

because Lie JC(Cp) is torsion-free, Log(Jtors(Q)) = 0, so we may set V = 0.
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Since Ω1(C) = (Lie JC)∨, given ω ∈ Ω1(C), we may define an Abelian p-adic integral,

fω(x) =
Ab∫ x

x0

ω := 〈Log(ι(x)), ω〉.

This integral has no periods and exists for purely p-adic Lie group-theoretic reasons. If

ω ∈ V ⊥, then fω vanishes on Z.

The function is fω(x) is only locally analytic. A priori, we do not have much control over

its domains of analyticity. This prevents us from bounding its zeroes. A good example of a

strange locally analytic function is a branch of logarithm, Log : Gm(Cp)→ Cp. It is zero at

all roots of unity. This function is analytic on residue discs, but there are infinitely many of

them, so we do not get much control over its zeroes.

3. p-adic integration

Let’s try to understand p-adic integration more generally to try to get more control over

domains of analyticity. Let X be a smooth Cp-analytic space and let

P(X) := {γ : [0, 1]→ X | γ(0), γ(1) ∈ X(Cp)}

be the set of paths with endpoints in X(Cp).

Definition 3.1. An integration theory on X is a map∫
: P(X)× Z1

dR(X)→ Cp

(where Z1
dR are the closed 1-forms) such that

(1) If U ⊂ X is an open subdomain isomorphic to a polydisc and ω|U = df for some

analytic function f on U , then∫
γ

ω = f(γ(1))− f(γ(0)),

(2)
∫
γ
ω only depends on the fixed endpoint homotopy class of γ,

(3)
∫
γ′∗γ =

∫
γ
ω +

∫
γ′
ω, and

(4) ω 7→
∫
γ
ω is linear in ω.

Theorem 3.2. For an Abelian variety A,
Ab∫

is an integration theory on Aan.

The big problem with the Abelian integration theory is that it’s not the only integration

theory and it’s not local. It makes heavy use of the commutative algebraic group properties

of A, and its pullback by the Abel–Jacobi map cannot be performed locally on curves.

There’s another, more intrinsic integration theory due to Coleman, de Shalit, and Berkovich,

which we call Berkovich–Coleman integration,
BC∫

. We begin by picking a branch of p-adic

logarithm, Log : Gan
m (Cp) → Cp. This integration theory is characterized by the additional

two properties:
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(1) If f : X → Y is a morphism and ω ∈ Z1
dR(Y ), then

BC∫
γ

f ∗ω =
BC∫

f(γ)

ω,

(2) If X = Gan
m , then

BC∫ x
1

dT
T

= Log(x).

The first property lets you “analytically continue by Frobenius” which is Coleman’s trick

for fixing constants of integration across residue discs. Property 2 normalizes the integral

on annuli. From these conditions, we can define the integral on curves. By de Jong’s theory

of alterations, we can extend it to analytic spaces. This integral gives us some control over

domains of analyticity because if ω is exact on a subdomain U , we can take a primitive.

This makes it possible to bound zeroes of
BC∫

.

4. Integral comparison theorem

Now, we’ll compare
Ab∫

and
BC∫

on curves. They turn out to be equal on curves of good

reduction. Stoll and Besser–Zerbes have also thought about this and have work or work-

in-progress. I will make the comparison on the Jacobian J , but everything I say holds for

Abelian varieties. We will pass to the Berkovich universal cover of Jan which we shall call Ean.

This is really just Raynaud’s uniformization theory in disguise. We have a uniformization

cross

T an

��
M ′ // Ean π //

��

Aan

Ban

where T an is the analytification of an algebraic torus, B is an Abelian variety with good

reduction, and M ′ is a lattice of rank equal to the dimension of T . For ease of exposition,

we will specialize to the maximally degenerate case, so we have Ean = (Gg
m)an. We pull back

the two integration theories to Ean to define two logarithms, LogBC,LogAb : Ean(Cp) →
LieEan(Cp) ∼= (Cp)

g. Again, note Ω1(J) = (Lie J)∨ = (LieEan)∨. Define the logarithms by,

for x ∈ Ean(Cp),

〈LogBC(x), ω〉 =
BC∫ x

0

ω

〈LogAb(x), ω〉 =
Ab∫ x

0

ω

We have the following observations:

(1) because
Ab∫

has no periods, LogAb vanishes on M ′,

(2) by the normalization property, LogBC : (Gm)g → (Cp)
g is just a Cartesian power of

the branch of p-adic logarithm that we fixed, and
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(3) by the fundamental theorem of calculus for integration theories, LogBC−LogAb van-

ishes on the fiber over the identity of trop: E(Cp)→ NQ, and so factors as

E
trop // NR

L // Lie(Gm)g

for some linear map L.

To compare the integrals on a curve, we set Σ := trop(J) = NR/ trop(M ′) and let Γ be

the skeleton of of Can. By a result of Baker–Rabinoff, the Abel–Jacobi map commutes with

tropicalization,

Can ι //

trop
��

Jan

trop
��

Γ
ιtrop // Σ

The map ιtrop is the tropical Abel–Jacobi map which is piecewise-linear on Γ. The conse-

quences are the following:

(1) LogBC−LogAb is constant on the inverse image under tropicalization of a vertex in

Γ, and

(2) LogBC−LogAb is an affine map on the inverse image under tropicalization of an edge

in Γ.

It follows that for an annulus in C given by the inverse image under tropicalization of an

edge, the condition
BC∫

ω =
Ab∫

ω is a codimension 1 condition on ω.

This finally gives us a strategy for bounding rational and torsion points. We will cover Z

by open sets Ui for which there exists ω ∈ V ⊥ such that

(1)
BC∫

ω =
Ab∫

ω on Ui, and

(2) ω is exact on Ui.

Then the functions fω are the desired analytic functions on Ui.

For rational points and rational torsion, we use for our covering

(1) residue discs around rational points not tropicalizing to an edge of Γ, and

(2) annuli tropicalizing to an edge.

For the annuli, we need dimV ≥ 3 to find an ω satisfying the integral agreement and

exactness conditions. Since the tropicalization of rational points is discrete, we can pick

economical coverings that give us enough overconvergence to guarantee that our 1-forms are

exact.

For geometric torsion, we use the following for our covering:

(1) Basic wide opens that occur as the inverse image under tropicalization of a flag

consisting of a half-open initial segment of an edge, and

(2) annuli that occur as the inverse image under tropicalization of a open sub-interval of

an edge.

The tricky genus condition above lets us pick out an exact 1-form on subsets of the first

kind.
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5. Bounding zeroes

There’s another complication. We want to bound the zeroes of fω on an annulus. If

ω =
∑
n6=0

anT
ndT

T
,

then

fω = c+
∑
n6=0

an
n
T n.

We would like to use a Newton polygon argument but the Newton polygons for ω and fω
may be quite different even apart from the constant term. The reason is that if p | n, then

val(an) 6= val(an/n). However, if we know how many zeroes ω has on the annulus, this gives

us control over the lengths of the segments of the Newton polygon corresponding to zeroes

in the annulus. But we need to know more than that! Because of the above divisibility issue,

we’d like to know where the segment is located. If it contained a point (n, val(an)) where

n is divisible by a high power of p, then the Newton polygons of ω and fω near that point

could be drastically different.

The answer is to consider 1-forms as global objects, in fact, as sections of the canonical

bundle, KC . The canonical bundle has a canonical metric, so we may take

F0 := log ‖ω‖ : Γ→ R.

This function measures the vanishing order of ω on components of the closed fiber of a model

of C. Its slopes are bounded by the combinatorics of linear systems on graphs. These give

us control of the relevant segments of the Newton polygons. By introducing a small error

term, we can bound the zeroes of fω on annuli. By using these bounds, together with the

Poincaré–Lelong formula, we may bound the zeroes of fω on basic wide opens.
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