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LOESER ON MOTIVIC INTEGRATION, APRIL 4, 2013

1. p-adic Integration

Igusa introduced p-adic integration to solve the following question of Borevich and
Shafarevich.

Question 1.1 ([BS66]). Let f ∈ Zp[x1, . . . , xn] and consider the sequence of integers

Nm = #{x ∈ (Z/pm+1Z)n : f(x) = 0 mod pm+1}.
Is the generating function

P (T ) =
∑

NmT
m

a rational function of T?

In his proof of an affirmative answer [Igu75], Igusa showed that P (T ) is related to the
p-adic integral

I(s) =

∫
Zn
p

|f |sdx

by a change of variables formula taking T to p−s. If f is a monomial, then this p-adic
integral can be computed by hand and shown to be a rational function in p−s. If f is not
necessarily a monomial then, roughly speaking, one uses resolution of singularities over
Qp to monomialize f , and then proceeds by a similar direct computation.

Serre considered a variant of this generating function, in which one counts only those
solutions to f mod pm+1 that lift to solutions over Zp, and asked the analogous rationality
question.

Question 1.2 ([Ser81]). Let

Ñm = #{x ∈ (Z/pm+1Z)n : ∃y ∈ Zn
p with f(y) = 0 and y ≡ x mod pm+1}.

Is the generating function

P̃ (t) =
∑

ÑmT
m.

rational?

In [Den84] Denef gave an affirmative solution, by a proof which again involves a change

of variables relating P̃ (T ) to a p-adic integral. In this case, the integral that appears is

Ĩ(s) =

∫
Zn
p

d(x, V )sdx,

where d(x, V ) denotes the p-adic distance from x to the hypersurface V where f = 0.
The main new difficulty is that d(x, V ) is no longer the norm of a polynomial and is not
monomialized by a resolution of singularities.
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Over the real numbers, the function d(x, V ) computing distance to a hypersurface is
semialgebraic. This is also true over Qp, with suitable definitions. More precisely, let
K be a field and consider the smallest family S(Kn), n ∈ N, of Boolean algebras of
subsets of Kn, containing zero loci of polynomials with coefficients in K and such that, if
X ∈ S(Kn) and pi : Kn → Kn−1 is the projection omitting the i’s coordinate, 1 ≤ i ≤ n,
pi(X) ∈ S(Kn−1). A semialgebraic set is an element of some S(Kn). Semialgebraic
sets are exactly sets definable in the first-order language of rings with coefficients in k.
One says a function is semialgebraic if its graph is a semialgebraic set. Tarski showed
that a subset of Rn is definable if and only if it is a finite Boolean combination of closed
semialgebraic sets, each defined by finitely many polynomials conditions of the form f = 0
or f ≥ 0 [Tar48]. Over Qp, thanks to a theorem of Macintyre [Mac76], the same statement
holds if the closed semialgebraic sets are instead defined by conditions of the form f = 0
or f = yr, for r = 2, 3, . . ., with f a polynomial.

Remark 1.3. With this definition, it is a nice exercise to check that sets defined by valua-
tive conditions of the form val(f) ≥ val(g) with f anf g polynomials are also semialgebraic
over Qp.

Macintyre’s theorem is the main ingredient of Denef’s proof of the rationality of Serre’s

generating function P̃ (T ).

Dependence on parameters. In his study of p-adic integrals, Denef obtained a good
understanding of how p-adic integrals vary with parameters. More precisely, let X be
a definable subset of Qn

p . Consider the Q-algebra CQp(X) generated by val(h(x)) and

p− val g(x), for definable functions g, h from X to Q∗
p.

Theorem 1.4 (Denef [Den85]). If ϕ ∈ CQp(X ×Qr
p) then the function taking λ ∈ Qr

p to∫
ϕ(x, λ)dx

belongs to CQp(Qr
p).

Here, the integral should be defined to be zero if the function is not integrable.

Remark 1.5. Note that the integrals in this theory take real values. This is an impor-
tant distinction from the p-adic valued integrals appearing in the work of Coleman and
Berkovich, discussed in earlier lectures at the Symposium

Remark 1.6. The analogues of both rationality questions are open for polynomials over

Fp((t)). Rationality for P would follow from resolution of singularities, but for P̃ even
this is not known.

2. Motivic Integration

The theory of motivic integration, as introduced by Kontsevich is his 1995 lecture at
Orsay, replaces Qp with the field of formal Laurent series C((t)), and the integrals no
longer take values in R, but rather in the localization

M = K(VarC)[L−1],
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of the Grothendieck ring of complex varietiesor in a completion M̂ a completion of M.
Here [L] = [A1

C] is the class of the affine complex line.
Kontsevich proved a suitable change of variables formula in this motivic integration

theory, and used it to prove birational invariance of Hodge numbers for Calabi-Yau vari-
eties. This strengthened a theorem of Batyrev, that birational Calabi-Yau varieties have
the same Betti numbers, which had been proved earlier using p-adic integration [Bat99].

A very brief sketch of the main idea in the proof is that birational Calabi-Yau varieties
X and Y carry nowhere vanishing gauge forms ωX and ωY , respectively. Then, since X
and Y are birational, their C[[t]] points and gauge forms agree outside a locus of infinite
codimension (over C). By an appropriate limiting procedure, it follows that∫

X(C[[t]])
ωX =

∫
Y (C[[t]])

ωY .

and this integration theory is defined such that
∫
X(C[[t]]) ωX and

∫
Y (C[[t]]) ωY are equal to

[X] and [Y ], respectively, in M̂.

3. Joint work with Cluckers [CL08]

This work is a motivic generalization of the work of Denef that is described above. One
considers definable subsets of C((t))n are cut out by conditions such as val(f) ≥ val(g).
For X definable over C((t)), we define a ring C(X), analogous to the ring CQp defined
above, for constructible subsets of Qn

p . In this construction,

C(pt) =M

[(
1

1− L−i

)
i≥1

]
,

and there is a well-behaved notion of integration, such that C is stable with respect to
integration with parameters.

If X is defined over Q or Q((t)), then there are natural specializations to Qp and Fp((t)).
Following a method initiated by Ax and Kochen [AK66], this allows to compare results
over pairs of fields such as these, with isomorphic residue fields and value groups. This
applies for instance to the Fundamental Lemma in Langlands theory [CHL11] or to the
local integrability of Harish-Chandra characters [CGH].

4. Connections with Nonarchimedean Geometry

Now we consider a geometric analogue of the numbers Nm from the beginning of the
talk. Let X be a smooth variety of dimension d over C, with

f : X → A1
C.

The analogue of Nm that we study is

Xm = {ϕ ∈ X(C[t]/tm+1) : f(ϕ) = tm mod tm+1)

Theorem 4.1 (Denef-Loeser [DL02]). For any m ≥ 1,

χc(Xm) = tr(Mn, H∗(F )),
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where M denotes the monodromy operator on the cohomology of the Milnor fiber F .

The proof is via motivic integration and resolution of singularities. Nicaise and Sebag
proved the following more general result based on nonarchimedean geometry.

Theorem 4.2 ([NS07]). If X is smooth and proper over C((t)) then

tr(ϕm, H∗(X ⊗ C((t)),Q`) = χc(S(X ⊗ C((t1/m))))

inM/(L−1), where S denotes the motivic Serre invariant, and ϕ is a topological generator

for Gal(C((t))|C((t))).

This formula looks very much like a Lefschetz trace formula for the action of ϕ, but
the proof of Nicaise and Sebag uses resolution of singularities and direct computation of
motivic integrals.

In recent joint work with Hrushovski [HL11], we give a new proof which is more con-
ceptual and does not use resolution of singularities. Instead, it involves a Lefschetz trace
formula and étale cohomology of analytic domains in Berkovich spaces.

One may introduce the generating function

Pmot(T ) =
∑
m≥1

[Xm]L−md Tm

in M[[T ]], which is a motivic analogue of the series P considered at the beginning. One
can prove it is rational, and the monodromy conjecture predicts that its poles are related
to eigenvalues of the monodromy. We refer to the survey [Loe09] for a precise statement.
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