TROPICAL SCHEME THEORY

3. MATROIDS

Matroids take “It’s useful to have multiple perspectives on this thing” to a ridicu-
lous extent.

Let E be a finite set of size n. Sometimes we will identify it with [n] = {1,...,n},
sometimes not.

Definition 3.1. A matroid on E is a collection T C 2F of independent sets satisfying
(I1) 0 eI,

(12) If S€ T and S' C S then S' € Z, and

(13) If S, T € T and |S| > |T| then there exists x € S such that TU{z} € T.

If S ¢ T we say that S is a dependent set.

(I3) is called the exchange/replacement axiom.

Example 3.2. (1) A finite collection of vectors {v. | e € E} in a vector space
determines a matroid, where S € 7 if and only if {v. | e € S} is linearly
independent.

(2) The matroid of a subspace V of a coordinate vector space K ¥ is defined by
S € T if and only if the coordinate functions {z. | e € S} are linearly
independent when restricted to V. Note that this an instance of (1), as
{ze|lv | e € E} is a vector arrangement in V*.

(3) A finite collection of linear hyperplanes { H.|e € E} C V in a finite-dimensional

vector space determines a matroid, where S € 7 if and only if codim ﬂ H, =

e€eS
|S|. (We allow the degenerate hyperplane H, = V'.) Again, this is an instance

of (1): If H, is the vanishing locus of a functional z. € V*, then the matroid
of the arrangement of hyperplanes H, C V is identical to the matroid of the
arrangement of vectors x, € V*. (We note that the choice of normal vector
Ze is only determined up to multiplication by K*; however, this ambiguity
does not affect the underlying matroid.)

(4) Given a finite graph G, the graphic matroid M (G) is the matroid on E(G)
where a set of edges is independent if and only if the subgraph spanned by
them is a forest.

(5) A finite subset {a. | e € E} of a field extension L/K defines an algebraic matroid.
Independence here is algebraic independence over K.
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(6) If P C Klx1,...,%,] is a prime ideal, take the finite set {x1,...,2,} in the
fraction field of KJzy,...,z,]/P. This gives the (algebraic) matroid of P.
Geometrically, S C [n] is independent in the matroid of P if and only if the
projection of V(P) C A™ onto the coordinate subspace A® is dominant.

Every algebraic matroid is obtained in this way: given ag,...,a, € L, the
kernel of K|[z1,...,2,] — L, 2; = «; is a prime ideal.

Definition 3.3. e € E is a loop of M is {e} is dependent. (Language coming from
matroid of a graph.) o

e, f € E are parallel in M if {e, f} is dependent. (Think about parallel edges between
two wvertices in a graph.)

Definition 3.4. A matroid is simple (think: simple graph) or a combinatorial geometry
if it has no loops and no parallel points.

Example 3.5. (simple matroids)

(7) A finite collection of distinct points in a projective space, with S € Z if and
only if the projective span of S has dimension |S| — 1.

(8) A finite collection of distinct hyperplanes in a projective space P with S € T
if and only if codim m H,=|S|or ﬂ H.=0and |S|=d+1.
ecsS ecsS

Definition 3.6. Two matroids (E1,71), (E2Zs) are isomorphic if there is a bijection
f: E1 — E5 such that S € I if and only if f(S) € Is.

Definition 3.7. Given a field K, a matroid is realizable over K if it is isomorphic
to the matroid of a vector space V. C K¥. A matroid is realizable if it is realizable
over some field. (The word representable gets used interchangeably with “realizable.”)
A matroid is reqular if it is realizable over every field.

Example 3.8. Every graphic matroid is regular. Why? Direct the edges, and
assign each edge to the corresponding column of the adjacency matrix. Check that
a collection of edges contains a cycle if and only if the corresponding columns are
linearly dependent.

Example 3.9. The uniform matroid U,.,, of rank r on n elements is the matroid on
[n] for which S C [n] is independent if and only if |S| < r. The uniform matroid
Uy n is realizable by a generic r-dimensional subspace of K™ (more precisely, V C K™
has underlying matroid U, ,, if and only if all Pliicker coordinates of V' are nonzero).
However, U, , need not be regular. For instance, U4 is not realizable over [y, and
U, 5 is not realizable over Fj.

Example 3.10. The 7 points of IF’[2F2 gives a matroid F7, the Fano matroid.
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The nonempty independent sets are all 1- and 2-element sets, along with the 28 sets of
3 non-collinear points. Note that taking the matroid of the lines gives an isomorphic
matroid. The matroid F7 is realizable over a field K if and only if charK = 2.

Example 3.11. The anti-Fano matroid (sometimes denoted F; ) is obtained by
taking the points with the same coordinates but over a field of characteristic # 2.
Equivalently, take the same picture but remove the circle.

The matroid F; is realizable over K if and only if charK # 2.
So a good way to make a non-realizable matroid is to smash these two together.

Definition 3.12. Given matroids M = (E,I), N = (F,J), the direct sum M & N
is the matroid on E'U F where the independent sets are {IUJ|I € Z,J € J}.

Example 3.13. The direct sum F7 @ F; is not realizable over any field.
Theorem 3.14 ([Nell6]). Asn — oo,

#{representable matroids on [n]}
#{matroids on [n]}

Idea of proof: Knuth proved that the number of matroids on [n] grows doubly
exponential with n. A realization of a matroid must satisfy non-vanishing of certain
determinants. By carefully examining these non-vanishing conditions, Nelson bounds
the number of realizable matroids on [n] (for n > 12) by 27°/4. The result follows.

— 0.

Cryptomorphism (i.e. matroids have a million different definitions.)

Definition 3.15 (Definition 2). A matroid E is a collection of bases B C 2F satis-
fying

(B1) B# 0, and

(B2) If By, By € B are distinct then for any e € By there exists f € By\By such that
(Bi\{e}) U{f} € B.
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Exercise 3.16. Prove that if Z C 2% satisfies axioms (I1)—(I3), then the set B of
inclusion-maximal sets in Z satisfies axioms (B1)-(B2). Conversely, if B C 2F satisfies
(B1)-(B2), define T C 2 to be the set of all subsets of elements of B and prove that
T satisfies (I1)—(I3). Thus, the definition of matroids in terms of bases is equivalent
to the definition of matroids in terms of independent sets.

We could axiomatize dependent sets, and formulate a definition of matroids in
terms of these axioms. We won’t write this down.

Just as we can axiomatize matroids in terms of maximal independent sets (bases),
we can also axiomatize matroids using minimal dependent sets (circuits).

Definition 3.17 (Definition 3). A matroid on E is a collection of circuits C C 2F
satisfying

(c1)b¢c,

(C2) if C € C, no proper subset of C € C, and

(C3) If C1,C5 € C are distinct then for any j € C1NCy the set C1 UC\{j} contains
a circust.

The intuition for (C3) is as follows. For a subspace V' C K™, a minimal dependent
set corresponds to a collection of coordinate functions {x; | i € C'} which satisfy a
unique (up to scaling by K*) linear relation ), .~ a;xz; on V, with all a; # 0. Given
two such linear forms of minimal support, each involving x;, we can appropriately
scale and subtract to obtain a linear form not involving x;, but this won’t necessarily
have minimal support.

Exercise 3.18 (Somewhat more difficult exercise). Show that this definition is equiv-
alent to the definition of matroids in terms of independent sets. As with the previous
exercise, this requires not only defining 7 in terms of C and vice versa, but showing
that axioms (I1)—(I3) are equivalent to axioms (C1)—(C3).

Definition 3.19 (Definition 4). A matroid on E is a rank function vk : 28 — Zs
such that

(R1) 1k(S) < IS,

(R2) (submodularity) tk(SUT) +1rk(SNT) <rk(S) +rk(T), and

(R3) For all S C E and x € E tk(5) <rk(SU{z}) <rk(S)+1.

The rank of a set is the size of its largest independent subset. The rank of a matroid
M on FE is tk(E), which is equal

The following is the least intuitive definition of matroids we’ll see. A flat is a
maximal set of a given rank.

Definition 3.20 (Definition 5). A matroid on E is a collection L is a collection
L C 2F of flats such that

(F1) E€ L,

(F2) if F1,Fy € L then 1N Fy € L, and

(F3) If F € L the flats that cover F' partition E\F.

Covering is in the poset sense: F' covers F if F C F' and F C S C F' with S € L
implies S = F or S = F'.
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We use the letter £ because the collection of flats, partially ordered by inclusion,
forms a geometric lattice, a lattice which is finite, submodular with respect to the
rank function, and in which every element is a join of atoms (an atom is a rank 1 flat).

The smallest flat containing a set S is called the span of S, or the closure of S.
There is a cryptomorphic definition of matroids in terms of the closure operator,
which takes a set to its span, but we will not consider that here.

Exercise 3.21 (Tricky “highly non-intuitive” exercise). Translate between flats and
circuits.

Exercise 3.22 (Not as tricky, but somewhat unnatural exercise). Identify the flats
of a graphic matroid.

Example 3.23. We can visualize flats in the realizable case as follows.

If M is the matroid of an arrangement of hyperplanes in a finite-dimensional vector
space V', then the rank of a set of hyperplanes is the codimension of their intersection.
Thus, a flat is the set of all hyperplanes containing a given subspace of V.

Equivalently, if M is the matroid of a vector arrangement in V*, then the rank of
a set of vectors is the dimension of their span. A flat is therefore the set of all vectors
contained in a given subspace of V*.

Duality

We now discuss a notion of duality for matroids, which generalizes the notion
of duality for planar graphs. (This generalization of duality for matroids, such as
non-planar graphical matroids, that did not otherwise have duals, was one of the
original motivations for the development of matroid theory.) Given a matroid M,
there is a naturally constructed dual matroid M™* on the same underlying set. This
construction has the property that (M*)* = M. It is worth emphasizing that the
duality of matroids is not a generalization of duality of vector spaces; rather, it is a
generalization of Gale duality of vector arrangements.

Example 3.24. Let {v1,...,v,} be a collection of vectors in a finite-dimensional
vector space V over a field K. Replacing V' with span{vy,...,v,}, we assume that
{v1,...,v,} spans V.

Let W C K™ be the vector space of solutions (a) = (ay,...,a,) to the linear

n
equation Zaivi = 0. This is not only a vector space, but a vector space with n
i=1
functionals w; : W — k, (a) — a;. That is, we have an arrangement {w1,...,w,} C
W*. This is called the Gale dual arrangement of {v1,...,v,} C V.
Another way to think about this is that W is the kernel of the surjection K™ — V,
e; — v;. We have the short exact sequences

0—-W—>K"—=V =0,
which dualizes to give

0¢+— W +— K" ¢—V*"¢— 0.



6 TROPICAL SCHEME THEORY

Note that W is the orthogonal complement of V*, with respect to the standard inner
product on K™.

Theorem 3.25. A subset {v;|i € S} is linearly independent in V if and only if
{w;|i ¢ S} spans W*. In particular, {v;|i € S} is a basis of V' if and only if {w;|i ¢ S}
is a basis of W*.

Exercise 3.26 (Not hard exercise). Prove this theorem.

These properties of Gale duality for vector arrangements inspire the following
definition of matroid duality.

Definition 3.27. If M is a matroid on E, the dual matroid M* is the matroid on
E whose bases are complements of bases of M.

Exercise 3.28 (Easy but nontrivial exercise). Prove that M* is a matroid. That is,
show that the basis exchange axiom works. If B, Bo are bases of M then for any
x € By there exists y € Bo\Bj such that (B1\{z})U{y} is a basis. The key point of
the exercise is to show that the basis exchange axiom holds for M™.

Example 3.29. If M is a realizable matroid, then M* is the matroid of the Gale
dual of any realization of M. This follows directly from Theorem [3.25

Example 3.30. The dual to a graphic matroid is called a cographic matroid. By a
theorem of Whitney, a graph G is planar if and only if the graphic matroid M = M(G)
is also cographic, in which case M* is the matroid of the dual graph of G.

Duality essentially doubles the number of cryptomorphic definitions of matroids.
These definitions are not novel—after all, the independent sets, circuits, flats, etc. of
M* must satisfy the same axioms as those of M—but we get useful definitions when
we can relate data of the dual matroid directly to data of the original matroid.

Exercise 3.31. A subset H C F is a hyperplane of M if H is a flat of rank rk(M)—1.
Prove that H is a hyperplane of M if and only if H¢ is a cocircuit of M, i.e. a circuit
of M*.

Use the circuit axioms (C1)—(C3) to provide a cryptomorphic definition of a ma-
troid M in terms of its set of hyperplanes H.

Example 3.32. In a graphic matroid, a cocircuit is a cut-set - the set of edges
connecting a vertex in V; to a vertex in V5 for some partition V(G) = V3 U V5 such
that the induced subgraphs on V; and V5, are connected.

Example 3.33. The planar graph G = has dual graph @

You can see that cut sets of G correspond to circuits in its planar dual. For example,

the cut-set \ corresponds to the circuit \/
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Deletion and Contraction
There are 2 ways to make a matroid on E\{e} from M.

Deletion: B(M\e) = {B € B(M)|e ¢ B}. Think about starting with

and going to .
Contraction: B(M/e) = {B\{e}|B € B(M),e € B}. Think about starting with

and going to
In terms of vectors, think about removing a vector and projecting, respectively.

A minor of M is a matroid obtained by a sequence of deletions and contractions.
It is often the case that specific minors form an obstruction to M possessing some
structure. For instance,

Theorem 3.34 (Tutte). A matroid M is regular if and only if M does not contain
Uaa, Fr, or (F7)* as a minor.

Many arguments/constructions in matroid theory go by induction/recursion on
deletion on contraction steps to reduce to a minor. Examples are the chromatic poly-
nomial and the Tutte polynomial.

The Bergman fan of a matroid

Let M be a loopless matroid on [n]. The Bergman fan of M, denoted E(M) is the
set

{(wh .o, wp) €RT Iré%l{wl} is attained at least twice for each circuit C} .
7

Where does this come from? If M is the matroid of a linear subspace V' C K™, then
the condition that M have no loops is equivalent to V' not being contained in a coor-
dinate subspace, so that V N (K*)™ is nonempty. Each circuit C of M comes from a
linear functional of minimal support C, lc = >, a;;, unique up to scaling by K*.
If we equip K with the trivial valuation, then the tropicalization of the equation lo is
the condition that min;ec{w;} is attained at least twice. It is a theorem that the set
{lc| C is a circuit} is a tropical basis of the ideal of V. It follows that, for realizable
M, the Bergman fan B(M) is equal to Trop(V') for any realization V. Of course, it
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is possible to define B (M) for a non-realizable matroid M, and it is an interesting

problem (which we will consider in more detail below) to ask if B(M) = Trop(X)
has a solution X C (K*)™.

Note: It follows from the definition that B(M) + R(1,...,1) = B(M). We will
write B(M) = B(M)/R(1,...,1). Some authors define the Bergman fan to be B(M),
but the language is not standard. We will try to distinguish by calling B(M) the
reduced Bergman fan.

Example 3.35. If M = Us 3 is the uniform matroid of rank 2 on 3 elements, then
{1,2,3} is the only circuit. It follows that the Bergman fan is

B(M) = {(w1, ws, w3) | min{wy, ws,ws} is attained at least twice},

and the reduced Bergman fan B(M) is

It is possible to define B(M) in terms of the other data of a matroid. We’ll specif-
ically look at bases and flats.

For w € R", the w-weight of a basis B is ), 5 w;. Note that for generic w, there
will be very few bases of maximal w-weight.

Definition 3.36. Given M and w € R™, let M, be the matroid on [n] with bases the
w-mazximal bases of M.

(Note: Maximal is correct here; if we use min with circuits, then we must use max
with bases.)

Theorem 3.37. A weight w is in B(M) if and only if My, has no loops.
Proof. If w ¢ B(M), then there is some circuit C' and i € C' with

w; < min{w; |j € C\{i}}.
Now, suppose ¢ is in some basis B of M. The span of C\{¢} contains ¢, and so
(B U C)\{i} spans the entire set [n]. That is, there exists j € C\{i} such that
(B\{i}) U{j} is a basis. This basis has strictly greater w-weight than B, and so i is
a loop in M,,.

Conversely, if i is a loop in M, then for any w-maximizing basis B, B U {i}
contains a circuit C of M. Necessarily, i € C, since C' ¢ B. For j € B we have that
(B\{j}) U {i} is a basis if and only if j € C\{i}. But since 4 is not contained in any
w-maximal basis, (B\{j}) U {i} is not w-maximal. Therefore, w; < w;. Since this
holds for every j € C\{i}, we have w; < min{w; |j € C\{i}} and w ¢ B(M). O
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Example 3.38. Recall that for M = U, 3, the reduced Bergman fan B(M) is the
following subset of R3/R - (1,1, 1).

We consider two of the relevant regions. The bottom left ray of B(M) is given by
weight vectors (wi,ws,ws) such that wqy = we < ws. In this case the w-maximal
bases are {1,3} and {2,3}, so M, has no loops. Thus every point on this ray is in
B(M). Similar analysis applies to the other rays.

The open first quadrant in the picture is defined by w3z < wy,ws. For any such
weight vector, the only w-maximal basis of M is {1,2}, so 3 is a loop of M,,. Thus
no such w is in B(M). The two other regions in the complement of B(M) come from
weight vectors for which 1 or 2 is a loop in M,,.

For w € R" let
Fw)={0CFH CHRC- CFCnl}
be the unique flag of subsets with
ew constant on each F;1\F; and
.w|Fi\Fi—1 > w|Fi+1\Fi'

Example 3.39. For w = (1,7,1,1,2,7), F(w) = {0 < {2,6} € {2,5,6} < [n]}.
Lemma 3.40 (JAKO6l Proposition 1]). The matroid M,, depends only on F(w).

The idea of the proof is to use the greedy algorithm. A subset of [r] is a w-maximal
basis if and only if it contains precisely rk(F;) —rk(F;_1) elements of F;\F;_, for each
i.

Theorem 3.41 ([AKQO6, Theorem 1]). A weight vector w is in B(M) if and only if
F(w) is a flag of flats.

Proof. If F; is not a flat, then there is some e ¢ F; such that e is in the span of F;.
In the process of constructing a w-maximal basis, the greedy algorithm will select
rk(F;) elements of F;. Since e is in the span of these elements, it cannot be in the
resulting basis. Thus, e is a loop of M, so w ¢ B(M).

Conversely, if each F; is a flat, then for any e there is an index ¢ such that e €
F\F;_;. In constructing a w-maximal basis, the greedy algorithm is free to pick e
among the rk(F;) — rk(F;_1) elements that it selects from F;\F;_;. Therefore, M,
contains no loops. O

Example 3.42. Once again, recall that for M = U, 3 we have that B(M) is
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We consider the same two regions as before. The bottom left ray is given by w; =
we < ws. In this case we have F(w) = {0 € {3} € {1,2,3}} which is a flag of flats
of Uy 3. So every point on they ray is in B(M).

The open first quadrant in the picture is given by ws < w1, wy. In this case F(w)
is one of {0 C {1,2} C {1,2,3}}, {0 C {1} C {1,2} C {1,2.3}}, or {0 C {2} C
{1,2} € {1,2,3}}. Since {1,2} is not a flat of Uy 3 this shows that no such w is in
B(M).

This gives us 2 fan structures on M:
Fine: w and v are in the same cone if and only if F(w) = F(v). The cone corre-
sponding to a flag F is
Cr = RZO <uF1,uF2 7UFk> +R(1, 1,..., 1)
wherefz(@QFl gFggng g_ [TL])
Coarse: w and v are in the same cone if and only if M,, = M,,.
This is in fact coarser - by Lemma once you know F(w), you know M,,.

Matroids in tropical geometry

Example 3.43. Consider the uniform matroid Us 4 and its reduced Bergman fan
B(Us 4). The coarse structure on B(Us 4) is the 2-skeleton of the fan of P2. In the fine
structure we subdivide the maximal cones: in one example, M,, has bases 123,124,
and in the fine structure we care which of 1,2 has more weight, corresponding to the
flag being ) C2C 12 C 1234 or ) C 1 C 12 C 1234.

Theorem 3.44 ([Huhl4, Theorem 38]). The reduced Bergman fan of a matroid is
balanced if and only if all mazimal cones have equal weight.

Proof. Set r = tk(M). Let 7 = Cr be a codimension 1 cone. Write F = (0 € F; €
-+« C F._5 C [n]) for the corresponding flag of flats. There is precisely one index [
such that rk(F;) = rk(Fj—1) + 2. Let Gy,...,G,, be the flats of rank rk(F;_1) + 1
such that Fj_y C G; C F;. Let F; be the maximal flag obtained from F by inserting
Gi. So

Fi=0ChC - CHR1CGCHC--CF._Cn]).

=

The balancing condition at 7 says that ZWt(C]-_i)UGi € R7. So

=1
m
ZWt(C.Fi)UGi\F,, = Clup, + Coup\p, + -+ Cro2Up, _\F,_y + Cr1UR\F,_,-
=1

The flat axioms applied to the restriction of the matroid to Fj tell us that Fj\F;_; =

|_|Gi\Fl_1. So the support of the vector ZWt(CFi)UGi\FL is Fj\F;_1. Hence ¢; =
i=1
wt(Cx,) for all 4.
It is a theorem of Bjorner [Bjo92] that the order complex of the lattice of flats of
a matroid is shellable. As a corollary, B(M) is connected in codimension one. Since
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the above argument applies to every codimension one cone 7, it follows that every
maximal cone has the same weight. (|

Realizability

Given a loopless matroid M does there exist a field K and X C Gy, ;x with

Trop(X) = B(M)? We follow the approach of [YulT].

Reminder: An algebraic matroid comes from {aq,...,a,} € L/K Equivalently, it
is given by a prime ideal P C K|[zy,...,x,]. This is nice because we can turn it into
algebraic geometry by setting X = V(P). Now S is independent if and only if the
coordinate projection X — A® is dominant.

Can we do the same thing with tropical varieties?

Assume P is monomial-free and let X’ = X ﬂ Gp,.

Lemma 3.45 ([Yul7, Lemma 2]). S C E is independent in the algebraic matroid
of P if and only if the projection of Trop(X') onto the coordinate subspace R® has
dimension |S| (from which it follows that the projection must be all of RS ).

Proof. Move to a valued extension such that tropicalization is surjective. Then this
is immediate from the algebraic geometry version. Note that passing to a valued
extension changes neither the algebraic matroid nor the tropicalization. (Il

Question 3.46 (Open question). For a tropical variety, when do we get a matroid
from coordinate projections?
Can this lead to/inform a good notion of irreducible/prime ideals/congruences?

There is a partial answer:

Lemma 3.47 ([Yul7, Lemma 3]). For any loop-free matroid M, S C E is indepen-
dent in M if and only if the projection of B(M) onto R has dimension |S)|.
Proof. It S = {s1,..., s} is independent, make a flag

() C span{s1} C span{sy, sa} C -+ C spanS.

The corresponding cone has full dimension upon projection to RS.
Conversely, if S is dependent, let

F=0CFRC - CRCE)

be any flag of flats. In the matroid obtained by restricting to S (equivalently, by
deleting S¢) we get a flag of flats

pchNScC---CF,NSCS.

Because tk(S) < |S], there are strictly fewer than |S| flats here. So when we project
to R¥ we get the span of fewer than |S| things, and so it can’t have dimension |S|.
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Since this is true for all F, we see that the whole projection has dimension less than
|S]. a

Theorem 3.48 ([Yul7, Theorem 4]). If B(M) = Trop(X) for some X C Gy, k then
M is algebraic over K.

Proof. Suppose B(M) = Trop(X). Since B(M) can only be balanced when all cones
have equal weight, it cannot contain proper tropical subvarieties of full dimension.
Thus, E(M ) is the tropicalization of every top-dimensional irreducible component of
X. That is, if B (M) is realizable, then it is realizable by an irreducible variety. By

Lemmas and M is algebraic. O
Question 3.49 (Open question). Is the converse of this theorem true?

The smallest example of an algebraic matroid that isn’t linearly realizable is the
non-Pappus matroid. This is the matroid given by considering a set of points as
in Pappus’s theorem (see https://en.wikipedia.org/wiki/Pappus%27s_hexagon_
theorem), except that the 3 points which Pappus’s theorem says will be collinear
are declared to not be collinear, so we automatically get that this is not linearly
realizable over any field. An alternative description of this matroid is as the matroid
on {1,...,9} whose bases are the sets of three points not on a straight line drawn in
the following picture:

1 2 3
y : 3

This matroid is, however, algebraic over every finite field. For some realizations see
[Ros14, Example 3.5] (this paper may be of independent interest). A starting point
for exploring the above open question might be to test it for this matroid.
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