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BERKOVICH DIFFERENT, AND LIFTING
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We assume familiarity with the terminology from Stefan Wewers’s talk (Hurwitz
trees, Artin characters, depth characters, thicknesses of annuli) as well as Michael
Temkin’s talk (the Berkovich different). We set some notation throughout.

• k is an algebraically closed field of characteristic p.
• G is a finite group.
• By convention, the image of an uppercase letter in a ring under a quotient

map is the corresponding lowercase letter. So, if R is a DVR, then we write
k[[t]] for the quotient of the power series ring R[[T ]] by the maximal ideal
of R.

The reader who is interested in an in-depth introduction to these topics might
consider reading the expository articles [Obu12] and [Obu17].

1. Motivation

In this talk, we are motivated by the following lifting problem for Galois covers of
curves. Let f : Y → X be a G-Galois branched cover of smooth, proper, connected
curves. Does there exist a characteristic zero DVR R with residue field k, along
with a G-Galois cover fR : YR → XR of smooth relative R-curves whose special
fiber (including the G-action) is f?

If there is such an fR, we say that f lifts to characteristic zero.

Remark 1.1. If G is trivial, then the lifting problem can be solved with R = W (k),
using standard techniques from deformation theory. In general, as long as R is
complete, one can first specify a lift XR of X and this does not change whether the
lifting problem can be solved.

Remark 1.2. One can think of the lifting problem as the “trivial” case of the lifting
problem for harmonic morphisms of metrized complexes of curves (as studied by
Amini, Baker, Brugallé, and Rabinoff), while keeping track of a group action. For
our lifting problem, the underlying graphs of these complexes consist of a single
vertex.

It turns out that there is a local-global principle for the lifting problem, see,
e.g., [BM00], [Gar96], [GM98]. Namely, let f : Y → X be a G-Galois cover of
smooth projective connected k-curves. At each ramification point y ∈ Y , the
extension of complete local rings ÔY,y/ÔX,f(y) is an Iy-extension of power series
rings k[[z]]/k[[t]], where Iy is the inertia group at y.

Theorem 1.3 (Local-Global Principle). The cover f lifts to characteristic zero if

and only if each Iy-extension ÔY,y/ÔX,f(y) ∼= k[[z]]/k[[t]] lifts to characteristic zero.
That is, if and only if there exists a characteristic zero DVR R and an Iy-extension
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R[[Z]]/R[[T ]] such that the Iy-action on R[[Z]] reduces to the given Iy-action on
k[[z]] modulo the maximal ideal of R.

A G-Galois extension k[[z]]/k[[t]] is called a local G-extension. The question
of whether a local G-extension lifts to characteristic zero is called the local lifting
problem.

Remark 1.4. In fact, if one can solve all the relevant local lifting problems for a
cover f : Y → X over a particular complete DVR R, then one can solve the original
lifting problem over the same R.

Remark 1.5. If k[[z]]/k[[t]] is a local G-extension, then G is of the form P oZ/m,
where P is a p-group and p - m. Thus one of the advantages of the local lifting
problem is that one need only deal with solvable groups.

Remark 1.6. If k[[z]]/k[[t]] is a local G-extension with G prime-to-p, then, up to
a change of variable, the extension is just the Z/m-extension k[[t1/m]]/k[[t]]. This
clearly lifts to characteristic zero over any DVR R containing mth roots of unity,
and the lift is given by R[[T 1/m]]/R[[T ]] with the standard Galois action.

Combining this with the local-global principle proves the result, originally due to
Grothendieck, that tame covers of curves lift from characteristic p to characteristic
zero.

It is possible for a local G-extension to have a Hurwitz tree obstruction to lifting,
as discussed in Stefan Wewers’s lecture. In fact, the Hurwitz tree obstruction is
quite powerful. For instance, let us call a group G ∼= P o Z/m a local Oort group
for p if every local G-extension in characteristic p lifts to characteristic zero. As a
consquence of the Hurwitz tree obstruction, one can prove the following result.

Theorem 1.7 (See [CGH11] and [BW09]). If G is a local Oort group for p, then
either

• G is cyclic,
• G ∼= Dpn ,
• or G ∼= A4 and p = 2.

Partial converses of this theorem are known.

• That cyclic groups are local Oort groups is a result of Obus–Wewers and
Pop ([OW14], [Pop14]), following results of Sekiguchi–Oort–Suwa ([SOS89])
and Green–Matignon ([GM98]), who proved the cases Z/p and Z/p2, re-
spectively. This is the so-called Oort conjecture.

• That Dp is a local Oort group is due to Bouw–Wewers ([BW06]) for p odd
and Pagot ([Pag02a] and [Pag02b]) for p = 2. The group D9 was shown
to be local Oort for 3 by Obus ([Obu15]), and D4 was shown to be local
Oort for 2 by Weaver ([Wea17]), building on work of Brewis ([Bre08]). The
other dihedral cases remain open.

• The group A4 was claimed to be local Oort by Bouw (see [BW06]), but the
proof was not written down. A proof was written down by Obus ([Obu16]).

A major current research question is to determine the list of local Oort groups
explicitly.

We know from Wewers’s talk that any lift of a local G-extension gives rise to a
Hurwitz tree with depth 0 at the root, whose Artin character at the root is equal
to the Artin character of the local G-extension coming from the higher ramification
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filtration. Now, in all cases of Theorem 1.7 except for D2n , n ≥ 2, we know how
to construct a valid Hurwitz tree from scratch corresponding to any possible Artin
conductor.

Question 1.8. Can we somehow use the information encoded in a Hurwitz tree to
determine a lift of a local G-extension to characteristic zero?

The Hurwitz tree corresponding to a lift of a local G-extension determines the
basic geometry of the branch locus of the lift, that is, the distances between the
branch points. In order to use Hurwitz trees to construct lifts, we will need to
enhance them with more data.

Namely, if Γ is a Hurwitz tree coming from a lift, then on each vertex v of Γ
with depth not equal to 0 (corresponding to a curve Cv/k), we can construct a “dif-
ferential Swan conductor” ωv. The differential Swan conductor is a function from

irreducible characters χ of G to Ω
⊗ dim(χ)
k(Cv)/k

. The idea is that this retains even more

of the characteristic zero information that is lost after reduction to characteristic
p.

This construction of differential Swan conductors is done in great generality by
Kato ([Kat87]), but simplifies when the group is cyclic. For simplicity, this is the
case we focus on.

2. Differential Swan conductors

For simplicity, we assume G = Z/pn. Thus all irreducible characters χ are 1-
dimensional, so ωv(χ) ∈ Ωk(Cv)/k. In this case, the depth δv(χ) and the divisor of
the differential Swan conductor [ωv] at a vertex v, as well as the Artin character
ae(χ) at an edge e depend only on the order of χ. By abuse of notation, when we
write δv, [ωv], or ae, we mean that we have plugged in a faithful character.

The differential Swan conductors satisfy certain compatibilities. The key one is
the following.

Proposition 2.1 ([BW09, Theorem 2.4.5]). Let Γ be the Hurwitz tree associated
to a lift of a Z/pn-extension. Let v be a vertex of Γ corresponding to a curve Cv,
and let e be an edge of Γ emanating from v, corresponding to a point x ∈ Cv. Then
ae = −ordxe

(ωv).

If we further assume that n = 1, then [ωv] is always the divisor of a logarithmic
or exact differential form (see, e.g. [Obu12, Appendix B]). For general n, the di-
visor [ωv] can be constructed from the divisors of the differential Swan conductors
corresponding to intermediate Z/p-extensions.

So far, we have only discussed differential Swan conductors on Hurwitz trees
associated to lifts of local G-extensions. But one can try to define a general “dif-
ferential Hurwitz tree,” which is a Hurwitz tree augmented with functions from

irreducible characters χ of G to Ω
⊗ dim(χ)
k(Cv)/k

for each vertex v with depth not equal to

zero, where these functions satisfy all the requisite compatibilities and requirements
(e.g., as in Proposition 2.1 and the paragraph immediately after). This definition
has only been written down in the case that G has a p-Sylow subgroup of order p
(see [BW06], where it is simply called a Hurwitz tree), but we have a reasonable
understanding of what it should be when G has a general cyclic p-Sylow subgroup.
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Remark 2.2. If we know how to define a differential Hurwitz tree for a given
group G, then we can say that a local G-extension has a “differential Hurwitz
tree obstruction” if there is no differential Hurwitz tree having depth zero and the
correct Artin character at the root. This is a stronger obstruction than the regular
Hurwitz tree obstruction, because one might be able to construct a Hurwitz tree,
but unable to construct the necessary differential forms.

Question 2.3. Given a local G-extension and a differential Hurwitz tree with depth
zero and correct Artin character at the root, can one construct a lift of the local
G-extension?

3. Lifting

3.1. Z/p-case. The answer to Question 2.3 is “yes” when G has p-Sylow subgroup
of order p (see [Hen00] for G ∼= Z/p and [BW06] for G ∼= Z/p o Z/m). We sketch
the idea for Z/p. Let Γ be the differential Hurwitz tree.

• Step 0. Recall that a lift R[[Z]]/R[[T ]] of a local G-extension k[[z]]/k[[t]]
corresponds to a cover of the open non-archimedean unit disk D. We choose
R complete, and in all steps below we freely take finite extensions of R as
necessary.
• Step 1. The Hurwitz tree breaksD up into open annuli and “non-archimedean

pants with arbitrarily many legs,” i.e., affinoids that are complements of
disjoint unions of open disks inside a closed disk.
• Step 2. For each non-root vertex v of Γ, construct a Z/p-cover of the

corresponding pair of pants using ωv and δv.
• Step 3. For each edge e of Γ, construct a Z/p-cover of the corresponding

annulus using ae, δv for the v incident to e, and εe (the thickness of the
annulus).
• Step 4. The Hurwitz tree compatibility requirements ensure that all these

covers glue together, thus giving a cover E → D.
• Step 5. In fact, there is only one isomorphism class of Z/p-extension
k[[z]]/k[[t]] for any given Artin character1. Thus the reduction of E → D
to characteristic p gives the original extension k[[z]]/k[[t]].

Remark 3.1. If one simply wants to solve the local lifting problem for Z/p, rather
than show how to get a lift corresponding to a given differential Hurwitz tree, then
this is easy to do explicitly (see, e.g., [Obu12, Theorem 6.8]). However, to solve the
local lifting problem for, say, dihedral groups of order 2p when p is odd, there is no
alternative known to the method outlined above.

3.2. Z/pn-case. If we take G ∼= Z/pn, it is not known how to complete the analogs
of Steps 3 and 4 above, and Step 5 is false. Solving the local lifting problem in this
case requires a different idea. The key step is to find a way to lift a single Z/pn-
extension k[[z]]/k[[t]] with the minimal possible jumps in the higher ramification
filtration (1, p, . . . , pn−1). In this case, one can write down a differential Hurwitz
tree.

1The Artin character can be read off from the ramification jump, and the unique isomorphism
class of extension with upper jump j is given on the level of fields by k((t))[y]/(yp − y − t−j)



WILDLY RAMIFIED COVERS, II 5

In the picture above, vertex vi is attached to pn−i− pn−i−1 leaves for 1 ≤ i ≤ n,
and 2 leaves for vn. The differential Swan conductors are somewhat difficult to
write down explicitly, but it can be done. The vertex v0 corresponds to the Gauss
point (unit disc centered at T = 0), and and the other vertices vi are type II points
corresponding to disks centered at T = 0. Other relevant information is on the
diagram.

Now we sketch the proof of this key step. Let D be the open unit disk and, for
r > 0, let Dr be the closed unit disk, centered at 0, of radius |p|r.

• Step 1. We attempt to use Kummer theory. That is, we assume ζp ∈ R
and we seek a lift R[[Z]]/R[[T ]] by finding g ∈ FracR[[T ]] and taking the
integral closure of R[[T ]] in (FracR[[T ]])[ pn

√
g].

• Step 2. Proceed by induction on n. We know the base case. If k[[s]]/k[[t]] is
the Z/pn−1-subextension of k[[z]]/k[[t]], then suppose we have g ∈ FracR[[T ]]
such that extracting a pn−1st root of g suffices to lift k[[s]]/k[[t]].
• Step 3. Adjust g so that it gives rise to a cover of Er1 of the closed disk
Dr1 lifting the part of the differential Hurwitz tree at v1 and to the left.
• Step 4. The fact that Er1/D1 yields the correct differential Swan conductor

at v1 means that we in fact automatically get a lift of a (bigger) disk Dr for
some r < r1. In fact, the depth function of a faithful character (which is
more or less Temkin’s Berkovich different) can be extended to a piecewise
linear function on the real line, as in the diagram below. It turns out that
we can choose r to be the the right-most kink in the diagram, and the slope
of the depth to the right of r is pn−1.
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• Step 5. After making a further adjustment to g, we can push this kink to
the left, thus giving us a smaller r.
• Step 6. The location of the leftmost kink can be locally expressed as

the negative of the valuation of an analytic function on an affinoid (the
affinoid is a parameter space for “admissible” choices of g). This takes a
minimum by the maximum principle for analytic functions.2 By Step 5,
this minimum must be 0! Note that this implies that the depth function
at 0 is 0. Thus, we in fact get an extension R[[Z]]/R[[T ]] yielding the
entire differential Hurwitz tree. So the reduction has the desired minimal
ramification jumps.

Remark 3.2. As was mentioned earlier, the local lifting problem for Dpn is still
open when n > 1, even for odd p. The method sketched above works perfectly well
for Dpn . The only obstacle is that we do not know how to write down a differential
Hurwitz tree in general.
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