ANALYTIC CURVES AND TROPICAL CURVES

JOSEPH RABINOFF

JOINT WITH M. BAKER AND S. PAYNE

1. Analytic curves: a tropical description

Let K be an algebraically closed field which is complete with respect to a nontrivial, nonarchimedean valuation val : $K \rightarrow \mathbf{R} \cup\{\infty\}$. Let R be the valuation ring of K and let k be its residue field. For notational simplicity we assume that $\operatorname{val}\left(K^{\times}\right)=\mathbf{R}$.

There is an analytification functor $X \mapsto X^{\text {an }}$ from the category of locally-finite-type K-schemes to the category of K-analytic spaces in the sense of Berkovich [Ber90]. The K-analytic space $X^{\text {an }}$ is closely analogous to the complex analytic space $X(\mathbf{C})$ associated to a complex variety X. An important difference is that in the nonarchimedean setting, the set of points of $X^{\text {an }}$ is identified with the set of morphisms $\operatorname{Spec}(L) \rightarrow X$, where L / K is an extension of valued fields (with a real-valued valuation), up to the evident equivalence relation generated by towers of valued field extensions. An advantage of using Berkovich's theory of analytic spaces is that $X^{\text {an }}$ has very nice point-set topological properties: for example, X is connected if and only if $X^{\text {an }}$ is path-connected, X is proper if and only if $X^{\text {an }}$ is compact and Hausdorff, etc. An analytic space also comes equipped with a sheaf of analytic or holomorphic functions, locally modeled on (quotients of) rings of convergent power series in finitely many variables.

Now let X be a smooth, proper, connected K-curve. In this case the analytification $X^{\text {an }}$ is a kind of infinite metric graph. We regard $X^{\text {an }}$ as the canonical "intrinsic" tropicalization of X. Here is one way to make this statement precise.

Let Γ be a metric graph with infinite leaves: this is an ordinary (finite) metric graph onto which we have attached some finite number of infinite tails, i.e. completed rays isometric to $[0, \infty]$. The leaf vertex at the end of such a ray is called an infinite vertex. An elementary tropical modification of Γ is a graph Γ^{\prime} obtained from Γ by potentially subdividing an edge and attaching another infinite tail to a vertex of Γ. By retracting the attached edge one obtains a retraction map $\tau: \Gamma^{\prime} \rightarrow \Gamma$, and there is an obvious inclusion map $\Gamma \hookrightarrow \Gamma^{\prime}$. For our purposes, a tropical modification of Γ is a graph Γ^{\prime} obtained by performing a sequence of elementary tropical modifications. The set of all modifications forms a directed system with respect to inclusion and an inverse system with respect to projection, so it makes sense to take the limits $\underset{\longrightarrow}{\lim } \Gamma^{\prime}$ and $\underset{\leftrightarrows}{\lim } \Gamma^{\prime}$.

The above constructions are closely related to the analytification of a curve X. Let \mathfrak{X} be a semistable R-model of X. The incidence graph of \mathfrak{X} is the graph $\Gamma_{\mathfrak{X}}$ whose vertices are the irreducible components of \mathfrak{X}_{k}, and whose edges are the nodes in $\mathfrak{X}_{k}(k)$; a node connects the two (or one) irreducible component(s) containing it. If $x \in \mathfrak{X}_{k}(k)$ is a node, then by semistability we have

$$
\widehat{\mathscr{O}}_{\mathfrak{X}, x} \cong R \llbracket X, Y \rrbracket /(X Y-\varpi)
$$

for some $\varpi \in K$ with $0<\operatorname{val}(\varpi)<\infty$. We define the length of the edge e_{x} corresponding to x to be $\ell\left(e_{x}\right)=\operatorname{val}(\varpi)$. This enriches $\Gamma_{\mathfrak{X}}$ with the structure of a metric graph.
Fact 1.1. There is a canonical embedding $\Gamma_{\mathfrak{X}} \hookrightarrow X^{\text {an }}$. Moreover, there is a metric on the target with respect to which this embedding is an isometry. There is a deformation retraction $\tau: X^{\text {an }} \rightarrow \Gamma_{\mathfrak{X}}$.

The subset $\Gamma_{\mathfrak{X}} \subset X^{\text {an }}$ is called a skeleton of \mathfrak{X}. This notion can be extended to a marked curve (X, D) : namely, let \mathfrak{X} be a semstable model of (X, D) in the sense that the points of D reduced to distinct smooth points of \mathfrak{X}_{k}. Let $\Gamma_{(\mathfrak{X}, D)}$ be the graph obtained from $\Gamma_{\mathfrak{X}}$ by adding one infinite tail
for each marked point $x \in D$, attached to the vertex corresponding to the irreducible component of \mathfrak{X}_{k} containing the reduction of X. Then $\Gamma_{(\mathfrak{X}, D)}$ again embeds into $X^{\text {an }}$, and there is a deformation retraction $\tau: X^{\text {an }} \rightarrow \Gamma_{(\mathfrak{X}, D)}$. We again call $\Gamma_{(\mathfrak{X}, D)}$ the skeleton associated to (\mathfrak{X}, D).

A skeleton of a curve X (resp. of a marked curve (X, D)) is by definition a subset of the form $\Gamma_{(\mathfrak{x}, D)}$ as above. Any two skeleta are related by a sequence of elementary tropical modifications.
Fact 1.2. The canonical map to the inverse limit of all skeleta

$$
X^{\mathrm{an}} \longrightarrow \underset{\leftarrow}{\lim } \Gamma
$$

is a homeomorphism. The canonical map

$$
\xrightarrow{\lim } \Gamma \longrightarrow X^{\text {an }}
$$

is injective, and its image is the set of all points of $X^{\text {an }}$ of types 1,2 , and 3 .
In this sense, the construction of the topological space $X^{\text {an }}$ from X can be understood in tropical terms.
Example 1.3. Let X / K be an elliptic curve with j-invariant $j(X)$. Suppose that $\operatorname{val}(j(X))=-r<0$. Then X has bad (multiplicative) reduction, so by the reduction theory of elliptic curves, X admits a semistable model \mathfrak{X} whose special fiber is isomorphic to a nodal cubic. If $x \in \mathfrak{X}_{k}(k)$ is the node then it follows from Tate's nonarchimedean uniformization theory that $\widehat{\mathscr{O}} \mathfrak{x}, x \cong R \llbracket X, Y \rrbracket /(X Y-\varpi)$ with $\operatorname{val}(\varpi)=r$. Therefore $\Gamma_{\mathfrak{X}}$ is a circle of circumference r, and $X^{\text {an }}$ is obtained from $\Gamma_{\mathfrak{X}}$ by taking the inverse limit over all tropical modifications of this circle.

2. Meromorphic functions

Let X be a curve as above, and let $f \in K(X)^{\times}$. In the complex setting, $F=-\log |f|$ is a harmonic function on $X(\mathbf{C})$. This remains true in the nonarchimedean setting.
Definition 2.1. Let Γ be a metric graph with infinite tails and let $F: \Gamma \rightarrow \mathbf{R} \cup\{ \pm \infty\}$ be a continuous function such that F takes infinite values only on infinite vertices.
(1) We say that F is piecewise affine with integer slopes if its restriction to each edge (identified with an interval or ray) has the form $F(x)=m x+b$ for $m \in \mathbf{Z}$ and $b \in \mathbf{R}$, and if there are only finitely many points at which F is not differentiable.
(2) For $x \in \Gamma$ we let T_{x} denote the set of tangent directions at x, and for $v \in T_{x}$ we let $d_{v} F(x)$ denote the outgoing slope of F in the v-direction. We say that F is harmonic at $x \in \Gamma$ provided that $\sum_{v \in T_{x}} d_{v} F(x)=0$, and that F is harmonic if it is harmonic at all points $x \in \Gamma$ except potentially at the infinite vertices.
The following is a reformulation of Thuillier's nonarchimedean Poincaré-Lelong formula. See [Thu05].
Theorem 2.2. Let \mathfrak{X} be a semistable model of (X, D) and let $\Gamma=\Gamma_{(\mathfrak{X}, D)}$. Let $f \in K(X)^{\times}$be a meromorphic function supported on D and let $F=-\log |f|: X^{\text {an }} \rightarrow \mathbf{R} \cup\{ \pm \infty\}$. Then
(1) F factors through the retraction $\tau: X^{\text {an }} \rightarrow \Gamma$.
(2) F is harmonic and differentiable on the edges of Γ.
(3) If $x \in D$ and v is the unique tangent direction at x then $d_{v} F(x)=\operatorname{ord}_{x}(f)$.

One can show that F is the unique function on Γ, up to additive translation, which satisfies properties (1)-(3) of the Theorem.
Example 2.3. Let X be the Tate curve of Example 1.3, and let $\tau: X^{\text {an }} \rightarrow \Gamma$ be the retraction onto the circle. Choose an origin $O \in X(K)$, so (X, O) is an elliptic curve. It is known that a divisor $D=\sum n_{x}(x)$ is principal if and only if $\operatorname{deg}(D)=\sum n_{x}=0$ and $\sum n_{x} \cdot x=O$ in the group law on $X(K)$. Let $\zeta \in X[3]$ be a 3 -torsion point. Assuming $\operatorname{char}(k) \neq 3$, one can show using Tate's uniformization theory that there exists a choice of ζ such that $\tau(\zeta) \neq \tau(O)$, and that the three points $\tau(O), \tau(\zeta), \tau(2 \zeta)$ are equidistant on the circle Γ. The divisor $D=(\zeta)+(2 \zeta)-2(O)$ is principal; let $f \in K(X)$ be a meromorphic function with divisor D. Let Γ^{\prime} be the tropical modification of Γ
obtained by adding infinite tails at the points $\tau(O), \tau(\zeta), \tau(2 \zeta)$. This is a skeleton of $(X,\{O, \zeta, 2 \zeta\})$. Then $F=-\log |f|$ is the harmonic function on Γ^{\prime} depicted in Figure 1.

Figure 1. The skeleton Γ^{\prime} and the harmonic function F of Example 2.3. The numbers indicate the slope of F along an edge, and the arrows indicate direction in which F is increasing.

We have the following basic fact about the relationship between meromorphic functions on X and piecewise affine functions on a skeleton. This theorem can be used as an analytic tool to construct algebraic functions from combinatorial data.
Theorem 2.4. (Baker-Rabinoff) Let \mathfrak{X} be a semistable model of X and let $\Gamma=\Gamma_{\mathfrak{X}}$. Any piecewise affine function with integer slopes $F: \Gamma \rightarrow \mathbf{R}$ has the form $F=-\log |f|$ for some $f \in K(X)^{\times}$.

In terms of divisiors, Theorem 2.4 says that every principal divisor D^{\prime} on the graph Γ is the image of a principal divisor D on X under the map $\tau_{*}: \operatorname{Div}(X) \rightarrow \operatorname{Div}(\Gamma)$ obtained from τ by extending linearly. (Recall that we are assuming $\operatorname{val}\left(K^{\times}\right)=\mathbf{R}$.) In the statement of Theorem 2.4 it is possible that D could have many more zeros and poles than D^{\prime} which cancel out under the retraction map; however one can show that given D^{\prime}, it is possible to choose D retracting to D^{\prime} and which has at most $g(X)$ extra zeros.

3. MAPS TO TORI AND EMBEDDED TROPICALIZATIONS

Let X be a curve as above, let $f_{1}, \ldots, f_{n} \in \Gamma\left(X \backslash D, \mathscr{O}_{X}\right)^{\times}$, and let $F_{i}=-\log \left|f_{i}\right|$. These functions define a morphism

$$
f=\left(f_{1}, \ldots, f_{n}\right): X \backslash D \longrightarrow \mathbf{T}:=\mathbf{G}_{m}^{n}
$$

Composing with the tropicalization map trop : $\mathbf{T}^{\text {an }} \rightarrow \mathbf{R}^{n}$, we obtain a map

$$
\text { trop }=\left(F_{1}, \ldots, F_{n}\right): X^{\text {an }} \backslash D \longrightarrow \mathbf{T}^{\text {an }} \xrightarrow{\text { trop }} \mathbf{R}^{n}
$$

By Theorem 2.2, if Γ is a skeleton of (X, D) then trop factors through the retraction $\tau: X^{\text {an }} \rightarrow \Gamma$, hence is controlled by the map trop : $\Gamma \rightarrow \mathbf{R}^{n}$. This map should be thought of as a morphism of the abstract tropical curve Γ onto the embedded tropical curve Trop $(X):=\operatorname{trop}\left(X^{\text {an }} \backslash D\right) \subset \mathbf{R}^{n}$. If $e \subset \Gamma$ is an edge then F_{i} is an affine function on e with integer slope $m_{i} \in \mathbf{Z}$, so trop (e) is a line segment or ray with rational slope. Hence $\operatorname{trop}(e)$ has a natural metric, namely, the lattice length, and the map $e \mapsto \operatorname{trop}(e)$ expands distances by the expansion factor $d_{e}=\operatorname{gcd}\left(m_{1}, \ldots, m_{n}\right)$.

The following is one of the main theorems of [BPR11].
Theorem 3.1. (Baker-Payne-Rabinoff) Let \mathfrak{X} be a semistable model of X and let $\Gamma=\Gamma_{\mathfrak{X}}$. Then there exists a collection of meromorphic functions $f_{1}, \ldots, f_{n} \in K(X)^{\times}$such that the associated tropicalization
map trop : $X^{\text {an }} \backslash D \rightarrow \mathbf{R}^{n}$ takes Γ homeomorphically and isometrically onto its image, where D contains the support of each $\operatorname{div}\left(f_{i}\right)$.
Example 3.2. Let X be as in Examples 1.3 and 2.3. Let D^{\prime} be the principal divisor $2(\zeta)-(2 \zeta)-(O)$, let f^{\prime} be a meromorphic function with divisor D^{\prime}, and let $F^{\prime}=-\log \left|f^{\prime}\right|$. The behavior of F^{\prime} on the skeleton Γ^{\prime} is depicted in Figure 2. Since we know the behavior of trop $=\left(F, F^{\prime}\right)$ on each edge of Γ^{\prime}, we can calculate the image of Γ^{\prime} under trop, and hence calculate $\operatorname{Trop}(X)$ (up to translation). For example, F has slope 0 on the oriented edge from B to C, and F^{\prime} has slope 1 , so $\operatorname{trop}(\overline{B C})$ is a vertical segment; since the expansion factor on this edge is equal to 1 , the length of this segment is $r / 3$. See Figure 3.

In this example, all expansion factors are equal to 1 , so trop takes all of Γ^{\prime} isometrically onto its image. In particular, the loop in $\operatorname{Trop}(X)$ has lattice length $r=-\operatorname{val}(j(X))$. This is an example of a phenomenon first noticed by Katz-Markwig-Markwig [KMM08].

Figure 2. The skeleton Γ^{\prime} and the harmonic function F^{\prime} of Example 3.2. Cf. Figure 1.

Figure 3. The tropicalization of the Tate curve X of Example 3.2.

Thus we see that a good understanding of a skeleton of X allows one to get information about tropicalizations of X, and conversely, by Theorem 3.1 there exist tropicalizations which are very nice from a skeletal point of view. It is natural to ask whether there is any way to verify that a given tropicalization is an isometric embedding on its preimage in some skeleton of X, using only "tropical" calculations.

For the rest of this paper, we assume for simplicity that $f=\left(f_{1}, \ldots, f_{n}\right): X \backslash D \rightarrow \mathbf{T}$ is a closed immersion.
Theorem 3.3. (Baker-Payne-Rabinoff) Let Γ be a skeleton of (X, D). Choose sets of vertices on Γ and $\operatorname{Trop}(X)$ such that for every edge $e \subset \Gamma$, either $\operatorname{trop}(e)$ is an edge of $\operatorname{Trop}(X)$ or is a vertex. Let $e \subset \Gamma$ be an edge. Then for all v in the interior of e, we have

$$
m_{\operatorname{Trop}}(v)=\sum_{e^{\prime} \mapsto e} d_{e^{\prime}} .
$$

In other words, the tropical multiplicity of v is equal to the sum of the expansion factors of all edges of Γ mapping to e.
Corollary 3.4. Let e be an edge of $\operatorname{Trop}(X)$ and let v be in the interior of e. If the initial degeneration $\mathrm{in}_{v}(X)$ is an integral scheme then there exists a unique edge $e^{\prime} \subset \Gamma$ mapping onto e, and the map $e^{\prime} \rightarrow e$ is an isometry. If $\Gamma^{\prime} \subset \operatorname{Trop}(X)$ is a subgraph such that $\operatorname{in}_{v}(X)$ is integral for all $v \in \Gamma^{\prime}$ then there exists a unique isometric section $\Gamma^{\prime} \rightarrow \Gamma$ of the tropicalization map.
Example 3.5. Let X be a Tate curve as in Example 1.3. Suppose that $X \backslash D$ is a closed subscheme of \mathbf{G}_{m}^{2} cut out by a Laurent polynomial g whose Newton complex is a unimodular triangulation with an interior lattice point. Then the hypotheses of Corollary 3.4 are verified for the entire tropicalization, and hence there is a section of the tropicalization map $\operatorname{Trop}(X) \hookrightarrow X^{\text {an }}$ which is an isometry onto a skeleton. In particular, the lattice length of the loop in $\operatorname{Trop}(X)$ is equal to $-\operatorname{val}(j(X))$. This gives another proof of the theorem of Katz-Markwig-Markwig.

There are many other applications of this set of tools, found in [BPR11]. For example:
(1) One can prove a generalized version of Speyer's "well-spacedness" condition.
(2) There are applications to tropical elimination theory.
(3) Much of the technology used in the proofs in [BPR11] works equally well in higher dimensions, and can be used to prove e.g. the Sturmfels-Tevelev multiplicity formula in the nonconstant valuation setting.

References

[Ber90] V. G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990.
[BPR11] M. Baker, S. Payne, and J. Rabinoff, Non-Archimedean geometry, tropicalization, and metrics on curves, 2011, Preprint available at http://arxiv.org/abs/1104.0320.
[KMM08] E. Katz, H. Markwig, and T. Markwig, The tropical \$j\$-invariant, 2008, Preprint available at http://arxiv.org/ abs/0803.4021v2.
[Thu05] A. Thuillier, Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d'Arakelov, Ph.D. thesis, University of Rennes, 2005, Preprint available at http://tel.ccsd.cnrs.fr/ documents/archives0/00/01/09/90/index.html.

