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1. ANALYTIC CURVES: A TROPICAL DESCRIPTION

Let K be an algebraically closed field which is complete with respect to a nontrivial, nonar-
chimedean valuation val : K → R ∪ {∞}. Let R be the valuation ring of K and let k be its residue
field. For notational simplicity we assume that val(K×) = R.

There is an analytification functor X 7→ Xan from the category of locally-finite-type K-schemes
to the category of K-analytic spaces in the sense of Berkovich [Ber90]. The K-analytic space Xan

is closely analogous to the complex analytic space X(C) associated to a complex variety X. An
important difference is that in the nonarchimedean setting, the set of points of Xan is identified with
the set of morphisms Spec(L) → X, where L/K is an extension of valued fields (with a real-valued
valuation), up to the evident equivalence relation generated by towers of valued field extensions. An
advantage of using Berkovich’s theory of analytic spaces is that Xan has very nice point-set topological
properties: for example, X is connected if and only if Xan is path-connected, X is proper if and only if
Xan is compact and Hausdorff, etc. An analytic space also comes equipped with a sheaf of analytic or
holomorphic functions, locally modeled on (quotients of) rings of convergent power series in finitely
many variables.

Now let X be a smooth, proper, connected K-curve. In this case the analytification Xan is a kind
of infinite metric graph. We regard Xan as the canonical “intrinsic” tropicalization of X. Here is one
way to make this statement precise.

Let Γ be a metric graph with infinite leaves: this is an ordinary (finite) metric graph onto which
we have attached some finite number of infinite tails, i.e. completed rays isometric to [0,∞]. The leaf
vertex at the end of such a ray is called an infinite vertex. An elementary tropical modification of Γ is
a graph Γ′ obtained from Γ by potentially subdividing an edge and attaching another infinite tail to a
vertex of Γ. By retracting the attached edge one obtains a retraction map τ : Γ′ → Γ, and there is an
obvious inclusion map Γ →֒ Γ′. For our purposes, a tropical modification of Γ is a graph Γ′ obtained
by performing a sequence of elementary tropical modifications. The set of all modifications forms a
directed system with respect to inclusion and an inverse system with respect to projection, so it makes
sense to take the limits lim

−→
Γ′ and lim

←−
Γ′.

The above constructions are closely related to the analytification of a curve X. Let X be a semistable
R-model of X. The incidence graph of X is the graph ΓX whose vertices are the irreducible compo-
nents of Xk, and whose edges are the nodes in Xk(k); a node connects the two (or one) irreducible
component(s) containing it. If x ∈ Xk(k) is a node, then by semistability we have

ÔX,x
∼= RJX,Y K/(XY −̟)

for some ̟ ∈ K with 0 < val(̟) < ∞. We define the length of the edge ex corresponding to x to be
ℓ(ex) = val(̟). This enriches ΓX with the structure of a metric graph.

Fact 1.1. There is a canonical embedding ΓX →֒ Xan. Moreover, there is a metric on the target with
respect to which this embedding is an isometry. There is a deformation retraction τ : Xan

։ ΓX.

The subset ΓX ⊂ Xan is called a skeleton of X. This notion can be extended to a marked curve
(X,D): namely, let X be a semstable model of (X,D) in the sense that the points of D reduced to
distinct smooth points of Xk. Let Γ(X,D) be the graph obtained from ΓX by adding one infinite tail
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for each marked point x ∈ D, attached to the vertex corresponding to the irreducible component of
Xk containing the reduction of X. Then Γ(X,D) again embeds into Xan, and there is a deformation

retraction τ : Xan
։ Γ(X,D). We again call Γ(X,D) the skeleton associated to (X, D).

A skeleton of a curve X (resp. of a marked curve (X,D)) is by definition a subset of the form Γ(X,D)

as above. Any two skeleta are related by a sequence of elementary tropical modifications.

Fact 1.2. The canonical map to the inverse limit of all skeleta

Xan −→ lim
←−

Γ

is a homeomorphism. The canonical map

lim
−→

Γ −→ Xan

is injective, and its image is the set of all points of Xan of types 1, 2, and 3.

In this sense, the construction of the topological space Xan from X can be understood in tropical
terms.

Example 1.3. Let X/K be an elliptic curve with j-invariant j(X). Suppose that val(j(X)) = −r < 0.
Then X has bad (multiplicative) reduction, so by the reduction theory of elliptic curves, X admits a
semistable model X whose special fiber is isomorphic to a nodal cubic. If x ∈ Xk(k) is the node then

it follows from Tate’s nonarchimedean uniformization theory that ÔX,x
∼= RJX,Y K/(XY − ̟) with

val(̟) = r. Therefore ΓX is a circle of circumference r, and Xan is obtained from ΓX by taking the
inverse limit over all tropical modifications of this circle.

2. MEROMORPHIC FUNCTIONS

Let X be a curve as above, and let f ∈ K(X)×. In the complex setting, F = − log |f | is a harmonic
function on X(C). This remains true in the nonarchimedean setting.

Definition 2.1. Let Γ be a metric graph with infinite tails and let F : Γ→ R∪ {±∞} be a continuous
function such that F takes infinite values only on infinite vertices.

(1) We say that F is piecewise affine with integer slopes if its restriction to each edge (identified
with an interval or ray) has the form F (x) = mx + b for m ∈ Z and b ∈ R, and if there are
only finitely many points at which F is not differentiable.

(2) For x ∈ Γ we let Tx denote the set of tangent directions at x, and for v ∈ Tx we let dvF (x)
denote the outgoing slope of F in the v-direction. We say that F is harmonic at x ∈ Γ provided
that

∑
v∈Tx

dvF (x) = 0, and that F is harmonic if it is harmonic at all points x ∈ Γ except

potentially at the infinite vertices.

The following is a reformulation of Thuillier’s nonarchimedean Poincaré-Lelong formula. See [Thu05].

Theorem 2.2. Let X be a semistable model of (X,D) and let Γ = Γ(X,D). Let f ∈ K(X)× be a

meromorphic function supported on D and let F = − log |f | : Xan → R ∪ {±∞}. Then

(1) F factors through the retraction τ : Xan → Γ.
(2) F is harmonic and differentiable on the edges of Γ.
(3) If x ∈ D and v is the unique tangent direction at x then dvF (x) = ordx(f).

One can show that F is the unique function on Γ, up to additive translation, which satisfies prop-
erties (1)–(3) of the Theorem.

Example 2.3. Let X be the Tate curve of Example 1.3, and let τ : Xan → Γ be the retraction onto
the circle. Choose an origin O ∈ X(K), so (X,O) is an elliptic curve. It is known that a divisor
D =

∑
nx(x) is principal if and only if deg(D) =

∑
nx = 0 and

∑
nx · x = O in the group law

on X(K). Let ζ ∈ X[3] be a 3-torsion point. Assuming char(k) 6= 3, one can show using Tate’s
uniformization theory that there exists a choice of ζ such that τ(ζ) 6= τ(O), and that the three points
τ(O), τ(ζ), τ(2ζ) are equidistant on the circle Γ. The divisor D = (ζ) + (2ζ) − 2(O) is principal;
let f ∈ K(X) be a meromorphic function with divisor D. Let Γ′ be the tropical modification of Γ
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obtained by adding infinite tails at the points τ(O), τ(ζ), τ(2ζ). This is a skeleton of (X, {O, ζ, 2ζ}).
Then F = − log |f | is the harmonic function on Γ′ depicted in Figure 1.
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FIGURE 1. The skeleton Γ′ and the harmonic function F of Example 2.3. The num-
bers indicate the slope of F along an edge, and the arrows indicate direction in which
F is increasing.

We have the following basic fact about the relationship between meromorphic functions on X and
piecewise affine functions on a skeleton. This theorem can be used as an analytic tool to construct
algebraic functions from combinatorial data.

Theorem 2.4. (Baker-Rabinoff) Let X be a semistable model of X and let Γ = ΓX. Any piecewise affine
function with integer slopes F : Γ→ R has the form F = − log |f | for some f ∈ K(X)×.

In terms of divisiors, Theorem 2.4 says that every principal divisor D′ on the graph Γ is the image
of a principal divisor D on X under the map τ∗ : Div(X) → Div(Γ) obtained from τ by extending
linearly. (Recall that we are assuming val(K×) = R.) In the statement of Theorem 2.4 it is possible
that D could have many more zeros and poles than D′ which cancel out under the retraction map;
however one can show that given D′, it is possible to choose D retracting to D′ and which has at most
g(X) extra zeros.

3. MAPS TO TORI AND EMBEDDED TROPICALIZATIONS

Let X be a curve as above, let f1, . . . , fn ∈ Γ(X \D,OX)×, and let Fi = − log |fi|. These functions
define a morphism

f = (f1, . . . , fn) : X \D −→ T ≔ G
n
m.

Composing with the tropicalization map trop : Tan → R
n, we obtain a map

trop = (F1, . . . , Fn) : Xan \D −→ T
an trop
−−→ R

n.

By Theorem 2.2, if Γ is a skeleton of (X,D) then trop factors through the retraction τ : Xan → Γ,
hence is controlled by the map trop : Γ → R

n. This map should be thought of as a morphism of the
abstract tropical curve Γ onto the embedded tropical curve Trop(X) ≔ trop(Xan \D) ⊂ R

n. If e ⊂ Γ
is an edge then Fi is an affine function on e with integer slope mi ∈ Z, so trop(e) is a line segment or
ray with rational slope. Hence trop(e) has a natural metric, namely, the lattice length, and the map
e 7→ trop(e) expands distances by the expansion factor de = gcd(m1, . . . ,mn).

The following is one of the main theorems of [BPR11].

Theorem 3.1. (Baker-Payne-Rabinoff) Let X be a semistable model of X and let Γ = ΓX. Then there
exists a collection of meromorphic functions f1, . . . , fn ∈ K(X)× such that the associated tropicalization
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map trop : Xan \D → R
n takes Γ homeomorphically and isometrically onto its image, where D contains

the support of each div(fi).

Example 3.2. Let X be as in Examples 1.3 and 2.3. Let D′ be the principal divisor 2(ζ)− (2ζ)− (O),
let f ′ be a meromorphic function with divisor D′, and let F ′ = − log |f ′|. The behavior of F ′ on the
skeleton Γ′ is depicted in Figure 2. Since we know the behavior of trop = (F, F ′) on each edge of
Γ′, we can calculate the image of Γ′ under trop, and hence calculate Trop(X) (up to translation). For

example, F has slope 0 on the oriented edge from B to C, and F ′ has slope 1, so trop(BC) is a vertical
segment; since the expansion factor on this edge is equal to 1, the length of this segment is r/3. See
Figure 3.

In this example, all expansion factors are equal to 1, so trop takes all of Γ′ isometrically onto its
image. In particular, the loop in Trop(X) has lattice length r = − val(j(X)). This is an example of a
phenomenon first noticed by Katz-Markwig-Markwig [KMM08].
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FIGURE 2. The skeleton Γ′ and the harmonic function F ′ of Example 3.2. Cf. Figure 1.
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FIGURE 3. The tropicalization of the Tate curve X of Example 3.2.



ANALYTIC CURVES AND TROPICAL CURVES 5

Thus we see that a good understanding of a skeleton of X allows one to get information about
tropicalizations of X, and conversely, by Theorem 3.1 there exist tropicalizations which are very nice
from a skeletal point of view. It is natural to ask whether there is any way to verify that a given
tropicalization is an isometric embedding on its preimage in some skeleton of X, using only “tropical”
calculations.

For the rest of this paper, we assume for simplicity that f = (f1, . . . , fn) : X \ D → T is a closed
immersion.

Theorem 3.3. (Baker-Payne-Rabinoff) Let Γ be a skeleton of (X,D). Choose sets of vertices on Γ and
Trop(X) such that for every edge e ⊂ Γ, either trop(e) is an edge of Trop(X) or is a vertex. Let e ⊂ Γ be
an edge. Then for all v in the interior of e, we have

mTrop(v) =
∑

e′ 7→e

de′ .

In other words, the tropical multiplicity of v is equal to the sum of the expansion factors of all edges of Γ
mapping to e.

Corollary 3.4. Let e be an edge of Trop(X) and let v be in the interior of e. If the initial degeneration
inv(X) is an integral scheme then there exists a unique edge e′ ⊂ Γ mapping onto e, and the map e′ → e
is an isometry. If Γ′ ⊂ Trop(X) is a subgraph such that inv(X) is integral for all v ∈ Γ′ then there exists
a unique isometric section Γ′ → Γ of the tropicalization map.

Example 3.5. Let X be a Tate curve as in Example 1.3. Suppose that X \D is a closed subscheme of
G

2
m cut out by a Laurent polynomial g whose Newton complex is a unimodular triangulation with an

interior lattice point. Then the hypotheses of Corollary 3.4 are verified for the entire tropicalization,
and hence there is a section of the tropicalization map Trop(X) →֒ Xan which is an isometry onto a
skeleton. In particular, the lattice length of the loop in Trop(X) is equal to − val(j(X)). This gives
another proof of the theorem of Katz-Markwig-Markwig.

There are many other applications of this set of tools, found in [BPR11]. For example:

(1) One can prove a generalized version of Speyer’s “well-spacedness” condition.
(2) There are applications to tropical elimination theory.
(3) Much of the technology used in the proofs in [BPR11] works equally well in higher dimen-

sions, and can be used to prove e.g. the Sturmfels-Tevelev multiplicity formula in the non-
constant valuation setting.
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