
SUPERFORMS AND TROPICAL COHOMOLOGY

KRISTIN SHAW

1. Introduction

These notes are a summary of my talk given at the Simons Symposium on Non-Archimedean and
Tropical Geometry in May 2017. In this talk I presented joint work with Philipp Jell and Jascha
Smacka relating the Dolbeault cohomology of superforms and tropical cohomology for polyhedral
spaces [JSS15]. My talk was preceded by the talk of Ilia Itenberg on Tropical homology and Betti
numbers of real algebraic varieties and followed by a talk of Yifeng Liu on Tropical Dolbeault
cohomology of non-Archimedean spaces.

I would like thank the organizers, Matt Baker and Sam Payne, for inviting me to speak at this
meeting, as well as the Simons Foundation for their support of this event.

2. Superforms

Superforms on Rr are bigraded real-valued differential forms introduced by Lagerberg [Lag12].

Definition 2.1. Let U ⊂ Rr be an open subset. Denote by Aq(U) the space of differential forms
of degree q on U . The space of (p, q)-superforms on U is defined as

Ap,q(U) := Ap(U)⊗C∞(U) Aq(U) =
p∧
Rr∗ ⊗R Aq(U),

where
∧p denotes the p-th exterior power.

In choosing a basis x1, . . . , xr of Rr, it is convenient to formally write a superform α ∈ Ap,q(U)
as

α =
∑

|K|=p,|L|=q
αKLd

′xK ∧ d′′xL

where K = {i1, . . . ip} and L = {j1, . . . jq} are ordered subsets of {1, . . . , r}, the coefficients
αKL ∈ C∞(U) are smooth functions and

d′xK ∧ d′′xL := (dxi1 ∧ . . . ∧ dxip)⊗R (dxj1 ∧ . . . ∧ dxjq).

This conventional abuse of notation follows [CLD12, Gub16].

There differential operators d′, d′′, and d = d′+d′′ on superforms. These operators are analogous
to the differential operators ∂, ∂, and d on complex differential forms. Here we will be most
interested in the differential operator d′′, which acts as,

d′′ : Ap,q(U) =
p∧
Rr∗ ⊗R Aq(U)→ Ap,q+1(U) =

p∧
Rr∗ ⊗R Aq+1(U),

given by (−1)pid⊗D, where D is the usual differential operator on forms.

In the above mentioned coordinates d′′ behaves in the following way,

d′′

Ñ∑
K,L

αKLd
′xK ∧ d′′xL

é
= (−1)p

∑
K,L

r∑
i=1

∂αKL
∂xi

d′xK ∧ d′′xi ∧ d′′xL.

In tropical geometry, the tropical affine line is T = [−∞,∞). We equip T with the topology so
that it is homeomorphic to a half open interval. Then Tr is equipped with the product topology.

1



2 KRISTIN SHAW

The space Tr is stratified for I ⊂ {1, . . . , r}, let RrI := {x ∈ Tr | xi = −∞ if and only if i ∈ I}.
We call RrI the points of sedentarity I. Notice that RrI ∼= Rr−|I|.

Superforms can be defined on polyhedral subspaces of Rr and Tr. A polyhedral subspace in
Rr is a subset which is the support of some polyhedral complex C. A polyhedral subspace in
Tr is the closure in Tr of polyhedral spaces contained in the strata TrI ∼= Rr−|I|. Lagerberg
defines superforms on open subsets Rr [Lag12]. Later restrictions of superforms to polyhedral
subspaces of Rr were considered in [CLD12, Gub16]. The restrictions of two distinct forms on
Rr may become indistinguishable upon restriction to a polyhedral subspace, therefore forms on
a polyhedral subspace are given by equivalence classes. In [JSS15], we define a superform on a
polyhedral space X ⊂ Tr as a collection of superforms α = (αI) such that αI and αJ satisfy a
compatibility condition whenever I ⊂ J . To avoid technical details, I refer the reader to Section
2.1 of [JSS15] for the precise definition.

The main point is that this extension of the definition of superforms to a polyhedral space X
yields sheaves of superforms Ap,qX which are fine and acyclic [JSS15, Lemma 2.15]. The differential
operator d′′ produces a complex of sheaves for each p,

0→ Ap,0X
d′′→ Ap,1X

d′′→ Ap,2X → . . . .

This extends the definition and the properties of the sheaves of superforms on polyhedral sub-
spaces of Rr from [CLD12] to polyhedral subspaces of Tr and also to abstract polyhedral spaces.
It is important to point out that the main interest of Chambert-Loir and Ducros’ work is to
study superforms Berkovich analytic spaces. They construct these forms via their polyhedral
counterparts which we treat here. They were also the first to define the cohomologies of super-
forms with respect to the operators d′, d′′, and d := d′ + d′′ in both the tropical and Berkovich
setting.

Our Theorem 3.4 in the next section answers the question posed in [CLD12, Section 0.4.3] about
whether there is a relation between tropical homology and the cohomology of superforms.

3. The Dolbeault cohomology of superforms

Following the work of Chambert-Loir and Ducros [CLD12], the consideration of the cohomology
of superforms on polyhedral subspaces in Rr with respect to differential operators d′ and d′′

continued with a Poincaré lemma proved by Jell [Jel16] proved in both the tropical and Berkovich
setting. In [JSS15] we extend the polyhedral side of this lemma to superforms on polyhedral
subspaces of Tr and also to superforms on polyhedral spaces [JSS15, Theorem 3.16]. These are
topological spaces equipped with an atlas of charts to polyhedral subspaces of Tr. Included
in this class of spaces are abstract tropical varieties and tropical manifolds, see for example
[IKMZ16, MZ14, Sha15].

Definition 3.1. For X a polyhedral space and p ∈ N we define the sheaf

LpX := ker(d′′ : Ap,0X → A
p,1
X ).

The Poincaré lemma relates the cohomology of the sheaf LpX with the Dolbeault cohomology of
superforms.

Theorem 3.2. [JSS15, Corollary ???] For a polyhedral space X and all p ∈ N, the complex

0→ Lp → Ap,0 d′′→ Ap,1 d′′→ Ap,2 → . . .

of sheaves on X is exact. Furthermore it is an acyclic resolution, we thus have canonical iso-
morphisms

Hq(X,Lp) ∼= Hp,q
d′′ (X) and Hq

c (X,Lp) ∼= Hp,q
d′′,c(X).

We call the above cohomology groups the Dolbeault cohomology of superforms, since the operator
d′′ behaves analogously to the operator ∂ for complex differential forms.
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Tropical cohomology, as introduced by Itenberg, Katzarkov, Mikhalkin, and Zharkov [IKMZ16],
is the cohomology of singular cochains of a polyhedral complex with non-constant coefficients.
The coefficient systems, which are denoted by Fp, are determined by the geometry of the complex.
Definition 3.3. Let C be a polyhedral complex in Tr. For σ ∈ C, let x ∈ int(σ) and I ⊂ [r] be
such that int(σ) ⊂ RrI . The p-th multi-cotangent space of C at σ are the vector subspaces

FpX(σ) =

Ñ ∑
τ∈CI :σ≺τ

p∧
L(τ)

é∗
Via the tropicalization procedure, this cohomology theory is capable of determining Hodge the-
oretic information of projective varieties. For example, under suitable conditions on the tropi-
calization of a family of non-singular complex projective varieties, the dimensions of the tropical
cohomology groups are equal to the Hodge numbers of a generic member of the family [IKMZ16,
Corollary 2].

The coefficient systems from Definition 3.3 can be turned into sheaves FpX with respect to the
inherent topology on a polyhedral space X. Moreover, the tropical cohomology groups are
isomorphic to the cohomology of the sheaves FpX . These groups will be denoted by Hp,q

trop(X) :=

Hq(X;FpX). There is the following theorem relating the Dolbeault cohomology of superforms
and the tropical cohomology of Itenberg, Katzarkov, Mikhalkin, and Zharkov by comparing the
sheaves LpX .
Theorem 3.4. [JSS15, Theorem 1] Let X be a polyhedral space equipped with a face structure.
Then there are canonical isomorphisms

Hp,q
trop(X) ∼= Hp,q

d′′ (X) and Hp,q
trop,c(X) ∼= Hp,q

d′′,c(X),

where Hp,q
•,c (X) denotes cohomology with compact support.

Following this theorem we will simply use Hp,q(X) to denote the tropical or Dolbeault cohomol-
ogy of X. The main upshot of this theorem is that tropical cohomology is in principal much
simpler to compute. Under some mild assumptions on the polyhedral space, tropical cohomology
is isomorphic to either the cohomology of the sheafs FpX or the singular or cellular cohomology
of the coefficient systems (or cellular sheaves) FpX . The cellular version of tropical cohomology is
the cohomology of finite dimensional chain complexes, and it has been implemented in polymake
[KSW16].
Question 3.5. Under what circumstances is the tropical cohomology of a tropicalization iso-
morphic to the cohomology of superforms on Berkovich analytic spaces?

Jell and Wanner calculated the Dolbeault cohomology of superforms for P1 and Mumford curves
[JW16]. The Betti numbers that they obtain coincide with the Betti numbers of the tropical
cohomology of a non-singular tropical curve of the same genus [BIMS15, Section 7.8]. Using
different techniques than in [JW16], Jell computed more examples of the Dolbeault cohomology
of superforms for non-archimedean curves and also provided a necessary and sufficient condition
for Poincaré duality in this situation [Jel17]. He also provides examples of curves for which H1,1

d′′

is not finite dimensional.

However, there are tropicalizations of embedded curves ι : X → P2 for which Hp,q
d′′ (X an) is not

isomorphic to the tropical cohomology of Trop(ιX ). These tropicalizations are even faithful in
the sense of [BPR16]. I optimisitically expect that requiring a tropicalization to be matroidal
should be sufficient to ensure that the tropical Dolbeault of superforms of X an is isomorphic to
the tropical cohomology of Trop(X ).

4. Poincaré duality for tropical manifolds

In the last sections, superforms, their cohomology, and also tropical cohomology were defined for
general polyhedral spaces. Notice that the balancing condition, which is ubiquitous in tropical
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geometry, made no appearance in the first two sections of these notes. To see how the balancing
condition influences tropical cohomology and the theory of superforms we can look to the inte-
gration of superforms [Gub16, CLD12]. The reader is also pointed to [JSS15] for the integration
of superforms on polyhedral spaces with points of sedentarity.

A tropical space is a polyhedral space equipped with a weight function such that the image in
each chart is a tropical cycle and that the weight function on X is consistent in the different
charts [JSS15, Definition 4.8]. The following is a version of Stokes’ theorem for superforms.

Theorem 4.1 ([CLD12, Gub16, JSS15] ). Let X be an n-dimensional weighted rational polyhedral
space. Then X is a tropical space if and only if for all β ∈ An,n−1c (X) we have∫

X

d′′β = 0.

For X an n-dimensional tropical space there is a map

PD: Hp,q
d′′ (X)→ Hn−p,n−q

d′′,c (X)∗,

called the Poincaré duality map. This map is obtained by integrating the wedge product of
forms, thus it is similar to the integration pairing on the cohomology of a manifold. The fact
that the Poincaré duality map on superforms descends to cohomology when X is a tropical space
follows from the analogue of Stokes’ theorem above.

We also point out that when X is a tropical space, it is quite simple to construct a fundamental
class [X] ∈ HBM

p,q (X), where HBM
•,• (X) denotes the tropical Borel Moore homology of X. The

recipe for the fundamental class is a simple sum over the top dimensional faces of X, assuming
X has a face structure [JSS15, Definition 3.2]. More precisely, if X is n dimensional

[X] =
∑
|σ|=n

wσβσσ,

where wσ is the weight associated to points in σ and βσ = v1 ∧ · · · ∧ vn ∈ Fp(σ) where v1, . . . , vn
is an ordered basis of the lattice parallel to the image of the face σ in a chart. This basis must
be ordered so it induces the same orientation as chosen on σ. Here |σ| denotes the dimensional
of a face σ of X.

It is a fact that ∂[X] = 0 is equivalent to X being a polyhedral space which satisfies the balancing
condition [MZ14, Sha15]. Two advantages of the tropical fundamental class over the situation
for manifolds is that this construction produces a cycle regardless of whether X is orientable or
even tropically non-singular.

Tropical manifolds are tropical spaces with the extra condition that they are locally modeled on
matroidal tropical cycles [MR, Sha11]. A matroidal tropical cycle is supported on the Bergman
fan of a matroid and equipped with weight one. Some matroidal cycles arise as tropicalizations of
linear spaces, however they are much more general and may even have no algebraic counterpart
[Stu02]. Despite perhaps being far from smooth objects in the algebraic or differentiable sense,
tropical manifolds exhibit many properties analogous to smooth spaces [Sha11].

Theorem 4.2. [JSS15, Theorem 2] If X is an n-dimensional tropical manifold then there are
isomorphisms

Hp,q(X) ∼= Hn−p,n−q
c (X)∗

for all p and q induced by the Poincaré duality map.

As with Poincaré duality for differentiable manifolds, we deduce this statement by first proving
it when X is an open subsets of Bergman fans of matroids. Then for general tropical manifolds
the theorem follows from methods in algebraic topology.

I should point out that it is fairly easy to construct examples of balanced weighted rational
polyhedral fans which do not satisfy the above duality theorem. Therefore, this duality does
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not hold for general tropical spaces. Yet still the condition that a space be locally matroidal is
not necessary. There are also integral tropical homology and cohomology groups and a Poincaré
duality relating tropical homology and cohomology should also hold over the integers. Taking
the fundamental class of a tropical variety, as described above, produces an integral tropical
homology class for any tropical cycle. The remaining ingredient in defining a cycle map to
integral tropical cohomology is this Poincaré duality over the integers.

We end with some open questions about the properties of these cohomology groups for tropical
manifolds and tropical spaces. For a compact tropical manifold X of dimension n, Theorem 4.2
implies a symmetry amongst the tropical cohomology groups, namely that,

Hp,q(X) ∼= Hn−p,n−q(X).

It is relevant to ask in what situations do other properties of the Hodge decomposition of complex
projective varieties transfer over to the tropical setting.

Question 4.3. Under what assumptions do we have Hp,q(X) ∼= Hq,p(X)?

In general there are tropical models of non-Kähler complex surfaces for which do not exhibit this
symmetry in their tropical cohomology groups [RS17]. Another appropriate question to ask is,
what is a good analogue of a Kähler condition in tropical geometry?

When X is the tropicalization of a Q-projective variety these isomorphisms hold by [IKMZ16],
[MZ14]. A canonical isomorphism is offered by the eigenwave map in [MZ14]. Liu defines
a monodromy map on superforms on Berkovich analytic spaces which is also well defined in
the tropical setting [Liu17]. Liu also conjectures that this monodromy map and the eigenwave
descend to the same action on the cohomology of polyhedral spaces via the isomorphism provided
in Theorem 3.4.

Question 4.4. Under what assumptions do analogues of the Hard Lefschetz theorem and the
Hodge-Riemann bilnear relations hold for tropical cohomology?

In the recent work of Adiprasito, Huh, and Katz, they showed that analogues of both theorems
hold for a commutative ring associated to a matroid [AHK15]. For matroids representable in
characteristic zero, this ring is the cohomology ring of the wonderful compactification of the
complement of a hyperplane arrangement over C and is related to the tropical cohomology of a
compactification of a matroidal fan. It is important to point out that the direct translation of
the Hodge Index theorem fails for tropical surfaces [Sha13]. These examples show that the kernel
of the monodromy/eigenwave map is important in determining the signature of the intersection
pairings on tropical cohomology.
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