
ON WILD COVERINGS OF BERKOVICH CURVES

MICHAEL TEMKIN

Abstract. These notes present an extended version of an author’s talk given

at the Simons Symposium on Non-Archimedean and Tropical Geometry held

in May 2017 at Schloss Elmau. It gives a brief overview of results and methods
of recent works [CTT16] and [Tem14] and a work in preparation [BT] on the

structure of residually wild morphisms between Berkovich curves.

1. Introduction

1.1. Conventiones. In this notes k denotes an algebraically closed complete real-

valued field with a non-trivial valuation of residual characteristic p = char(k̃). By a
nice curve X we always mean a connected compact separated quasi-smooth strictly
k-analytic curve. For any point x ∈ X(2) of type 2, Cx denotes the reduction curve

of X at x (or the germ reduction of X at x). Recall that Cx is the smooth k̃-curve

with k(Cx) = H̃(x) which parameterizes the branches of X at x.
Furthermore, by f : Y → X we always mean a finite generically étale morphism

of nice curves, and then ny : Y → N is the multiplicity function of f given by
nf (y) = [H(y) : H(x)]ey, where ey is the classical ramification index. For d ∈ N
we denote by Nd and N≥d the set of points y ∈ Y such that nf (y) = d and

nf (y) ≥ d, respectively. Finally, for any y ∈ Y (2) by f̃y : Cy → Cf(y) we denote the
corresponding reduction morphism of f .

1.2. Skeletons of curves. In this notes, a skeleton Γ of a nice curve X is a
topological graph ΓX ⊂ X with finitely many edges and vertices such that X \Γ is
a disjoint union of open discs and the set of vertices V (Γ) consists of points of type
2 and 1 and contains at least one point of type 2. It follows that Γ is connected
and V (Γ) = Γ(1)

∐
V (Γ)(2), where Γ(1) is the set of points of Γ of type 1. We call

vertices of types 2 and 1 finite and infinite, respectively.

Remark 1.2.1. One can often assign to analytic spaces invariants on four levels:
a topological level, a tropical or combinatorial level, a reduction level, and a log
reduction level. Some invariants are strictly more informative than the other ones,
as illustrated by the following scheme.

Top �
� //
� _

��

Trop� _

��
k̃ − Sch �

� // k̃ − LogSch.

In our definition, a skeleton Γ of X is an invariant of the topological level. It
can be enriched to other levels as follows:
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• The combinatorial level: provide each finite vertex y with the genus gy =
g(Cy), and provide each edge of Γ with the exponential metric induced by
the radii of annuli.
• The reduction level: consider the semistable k̃-curve Xs with the divisor
Ds, where X is the semistable formal model associated with Γ and D is the
divisor associated with Γ(1).
• The log reduction level: adds to Xs a log structures obtained by restricting

the log structure of generic units on X.

Remark 1.2.2. (i) In fact, this log structure is determined by the lengthes of the
edges of Γ. So, the diagram behaves as a pushout diagram: combinatorial and
reduction information agree on the topological level, and their union is equivalent
to the information encoded in the log reduction level.

(ii) An equivalent way to work with the reduction level was suggested in [ABBR15]:
a metrized complex of curves is obtained by assigning a reduction curve Cx to any
finite vertex x of a metrized graph Γ so that the edges from x correspond to some
points of Cx. In the sequel we will work with such objects.

1.3. Skeletons of morphisms. By a skeleton of f : Y → X we mean a pair of
compatible skeletons of X and Y and the induced map Γf : ΓY → ΓX such that
ΓY contains all ramification points of f . It exists by the simultaneous semistable
reduction theorem, which, in fact, follows rather simply from the usual semistable
reduction of curves. Note that for any edge e = [y1, y2] ∈ ΓY the induced map
e → f(e) is monomial of degree ne and for i = 1, 2 we have that ne is the degree

of f̃yi
at the point corresponding to e. On the combinatorial level, Γf satisfies

various natural restrictions. Even in the residually tame case, these restrictions do
not ensure that a map of graphs lifts to a map of curves, but the following result
of [ABBR15] shows that the only obstacle is to lift it to a log reduction level

Theorem 1.3.1. (A) If f is residually tame then Γf is a finite harmonic morphism
of metrized complexes of curves.

(B) If X is a nice curve with a skeleton ΓX and h : Γ → ΓX is a finite gener-
ically separated harmonic map of metrized complexes of curves then there exists a
residually tame lifting f : Y → X such that h = Γf .

1.4. Goals of this project. This project aims to define finer invariants of mor-
phisms that will provide an adequate description also in the residually wild case.
In particular, we aim to obtain some lifting results. In the sequel we assume that
p > 0 as otherwise f is automatically residually tame.

These notes describe main results of the following works:

• [CTT16] constructs a new combinatorial invariant of f , the different func-
tion δf : Y → [0, 1].
• [Tem14] constructs a profile function φf , which is a stronger combinatorial

invariant of f , and perhaps encodes any other combinatorial invariant.
• [BT] refines δf to the log reduction level by associating to f reduction

differential forms φy on Cy for any finite vertex y.

2. The different function

2.1. Different of extensions.
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2.1.1. The real-valued case. Recall that for a finite separable extension of real-
valued fields L/K the different δL/K is defined to be the absolute value of the
zeroth Fitting ideal of ΩL◦/K◦ . In our case, the latter module will always coincide
with the annihilator of ΩL◦/K◦ , and hence δL/K = |Ann(ΩL◦/K◦)|. One can also

define a logarithmic different, but it coincides with δL/K whenever |K×| is not
discrete.

2.1.2. The discrete-valued case. Same definition applies to the case when F/E is
a finite separable extension of discrete valuation fields with perfect residue fields.
In this case we will use the additive notation: δF/E = ordF (Ann(ΩF◦/E◦)). In the

same way, the logarithmic different is defined as δlog
F/E = ordF (Ann(Ωlog

F◦/E◦)). The

two differents are related by

δlog
F/E = δF/E − ordF (πE) + ordF (πF ) = δF/E − eE/F + 1.

Note that δlog
F/E ≥ 0 and the equality is achieved if and only if F/E is tame. Thus,

the different is a qualitative invariant measuring the “wildness” of F/E.

2.2. The different function. In a joint work [CTT16] with A. Cohen and D.
Trushin we study the different function δf : Y hyp → [0, 1] defined by δf (y) =
δH(y)/H(f(y)) for a point y of type 2, 3 or 4.

2.2.1. Basic properties. First, one shows that δf is pm (i.e. piecewise monomial)
and describes the range its values and slopes may attain:

Theorem 2.2.2. For a finite generically étale f : Y → X and a skeleton Γf : ΓY →
ΓX one has that:

(i) δf is a pm function on Y hyp and it is monoial on each edge of ΓY ,
(ii) |nf (y)| ≤ |δf (y)| ≤ 1,

(iii) for any y ∈ Y (2) and v ∈ Cy the slope s = slopev(δf ) satisfies

|nf (v)| ≤ |δf (y)| ≤ |nf (v) + s|.

Moreover, (ii) and (iii) are the only restrictions on δ and s, and any allowed
combination can be already obtained for étale morphisms A1 → A2 of two annuli
given by x = tn + ctm.

Remark 2.2.3. This is essentially a claim about étale morphisms between annuli,
so computations are simple. One should use that δ = |dxdt | · |t| · |x|

−1 on the skeleton

of A1 and dx
dt ∈ O(A1)×. In particular, in the example one takes y to be a boundary

point and achieves that n = nv, s = n−m and δf (y) = |c|.

Remark 2.2.4. The conditions (ii) and (iii) of the theorem are most restrictive in
the mixed characteristic case. For example, if n = p then |p| ≤ δf ≤ 1, s /∈ pZ \ {0}
and s = 0 can happen only when δf (y) = 1 or δf (y) = |p|.

2.3. Main results. The following result describes the restrictions δf satisfies lo-
cally at a point y ∈ Y .

Theorem 2.3.1. For a finite generically étale f : Y → X and a skeleton Γf : ΓY →
ΓX one has that:

(i) For any point y ∈ Y (1) of type 1 one has that slopey(δf ) = δlog
Oy/Of(y)

and

|δf (y)| = |ny|.
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(ii) For a non-boundary point y ∈ Y of type 2 with x = f(y) one has that

2g(y)− 2− 2ny(g(x)− 1) =
∑
v∈Cy

(−slopevδf + nv − 1).

In particular, almost all slopes of δf at y equal the inseparability degree niy of

H̃(y)/H̃(x).
(iii) The different behaves trivially outside of ΓY in the sense that slopevδf =

nv − 1 for any direction v not pointing towards ΓY .

Remark 2.3.2. (i) Part (i) of the theorem indicates that δf is, in fact, the log
different function. This does not affect its values at the points of Y but gives a
better interpretation of formulas involving differents of discretely valued fields.

(ii) Part (ii) reduces to the Riemann-Hurwitz formula for Cy → Cx when f is
residually tame at y. In general, it is related to the Ogg-Shafarevich formula for
certain connections.

(iii) The theorem implies the global Riemann-Hurwitz formula for f (which in-
cludes a correction term at the boundary when X and Y are not proper). In
particular, it gives a local analytic proof of non-existence of finite étale coverings
of P1

k. Note that this is a non-trivial fact, since P1
k does have infinite étale covers.

2.4. The degree-p case. If f is of degree p then δf (y) < 1 can happen only
when ny = p. Hence it follows from Theorem 2.3.1(iii) that δf increases outside
of ΓY with constant slope p − 1 until it attains the maximal possible value 1. In
particular, Np is the radial neighborhood of the subgraph Γp = Np ∩ ΓY of ΓY of

radius δ
1/(p−1)
f |Γp .

3. Radialization and profile function

3.1. The sets Nd. In general, δf (y) is determined by its restriction onto ΓY and
the multiplicity function nf , but the latter can be relatively complicated. So, it is
a natural question if one can describe the sets Nd in any constructive way. This
description was found in [Tem14]:

Theorem 3.1.1. For any skeleton Γf of f and a natural number d ∈ N \ pN the
set Nd is a subgraph of ΓY . Furthermore, if Γf is large enough then each set N≥pn

is radial around Γ≥pn := ΓY ∩ N≥pn of radius rn, where rn : Γ≥pn → [0, 1] is a
continuous function monomial on the edges of Γ≥pn .

Remark 3.1.2. In fact, any skeleton works fine if f is tame, Galois, or of degree p.
In general, it suffices to choose any skeleton of the Galois closure of f and project
it onto Y .

The proof of this theorem is pretty simple. It is trivial for residually tame
morphisms, and the case when f is of degree p is established in §2.4. If f is Galois
then one can locally split it into compositions of morphisms of the above two types.
Finally, the general case is dealt with by passing to the Galois closure.

3.2. The profile function. In principle, a radializing skeleton Γf of f (i.e. a
skeleton as in Theorem 3.1.1) and pm functions r1, . . . ,rn on Γf provide a full
combinatorial description of f (in particular, they determine δf ). However, there is
an equivalent but more convenient way to organize this combinatorial information
which uses a so-called profile function. For any interval l = [z, y] ∈ Y with z of
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type 1 and [z, y]∩ΓY = {y} we have that y is of type 2, and hence both l and f(l)
can be identified with the interval [0, 1] by the exponential distance function. In
particular, the restriction of f onto l can be viewed as a pm automorphism of [0, 1],
say ϕl ∈ Autpm([0, 1]). If Γf is radializing then ϕl depends only on the end-point

y ∈ ΓY and we obtain a map ϕ
(2)
Γ : Γ

(2)
Y → Autpm([0, 1]) which assigns to y the

profile function ϕy.

Remark 3.2.1. One can easily express ϕy in terms of the radii ri(y) and vice versa.
The main advantage of ϕy is that it is obviously compatible with compositions.

Clearly, ϕ
(2)
Γ is compatible with extensions of Γ, hence the profile ϕy at a point

of type 2 is independent of the skeleton, and we obtain a profile map ϕ(2) : Y (2) →
Autpm([0, 1]).

Theorem 3.2.2. (i) ϕ(2) extends to a pm profile map ϕf : Y hyp → Autpm([0, 1]).
(ii) The profile maps are compatible with compositions of morphisms and alge-

braically closed extensions of the ground field.
(iii) ϕf (y) is, in fact, the classical Herbrand function ϕH(y)/H(f(y)) of the exten-

sion H(y)/H(f(y)) of the completed residue fields.

Remark 3.2.3. (i) The proof is again via local splitting of f into a composition
of residually tame morphisms and morphisms of degree p.

(ii) In order to make this rigorous, one had to extend the classical theory of
Herbrand functions to certain non-discrete-valued cases, but this is rather straight-
forward.

(iii) Our geometric definition of the profile function directly applies to non-
normal and even inseparable extensions.

4. Reduction forms

Our last aim is to refine the combinatorial invariants δf and ϕf to the log reduc-
tion level. This is a new approach developed with U. Brezner in [BT]. To outline
it we will have first to recall some arguments from [CTT16], and to illustrate the

main ideas we will even start with the case of algebraic varieties over k̃.

4.1. A baby case. In this section, h : C → S is a generically étale morphism of

smooth k̃-curves, v ∈ C is a closed point and u = h(v). Note that ΩC defines
a natural order on the space of meromorphic forms on C. Namely, ordv(fdtv) =

ordv(f), where tv is a regular parameter at v. In the same way Ωlog
C defines another

order, that we call the logarithmic order. Note that logordv(g dtv
tv

) = ordv(g) and

logordv(ω) = ordv(ω) + 1.
Finally, we define a p-order on meromorphic functions by

ordv(f) = max
c∈k(C)

ordv(f − cp).

Clearly, it is determined by the image of f in the completion of k(C) at v.

Lemma 4.1.1. Keep the above notation. Then
(i) The different measures the difference between the differential orders on C and

S, namely δv/u = ordv(h∗ω)−nvordu(ω) for any non-zero meromorphic differential
form ω on S.

(ii) In the same way, δlog
v/u = logordv(h∗ω)− nvlogordu(ω).
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(iii) pordv(t) = logordv(dt) for any t ∈ k(C).
(iv) If tu is a regular parameter at u then

δv = ordv(dtu)− nv = pordv(tu)− nv + 1.

The proof is a simple exercise.

4.2. k-analytic analogues. Let X be a nice curve. Then the O◦X -semilattice
Ω�X = O◦Xd(O◦X) of ΩX defines a seminorm ‖ ‖Ω called the Kähler seminorm, see
[Tem16]. For any form ω on X the function ‖ω‖Ω is pm, and, as in the baby
case, given a morphism f : Y → X and a non-zero form ω on X we have that
δf = ‖f∗ω‖Y · f∗‖ω‖−1

X . This formula with ω = dtX for a tame parameter tX on
X will be our main tool for computing δf . Note that ‖dtX‖X = rtx is the radius
function of tX .

In addition, we will consider a p-seminorm | |p on functions on Y given by
|h|p,y = infc∈Oy

|h− cp|y.

4.3. Reduction of differential forms. The following theorem from [CTT16]
computes the reduction of Ω�X .

Theorem 4.3.1. For any point x ∈ X of type 2, Ω�XG,Cx
/k◦◦Ω�XG,Cx

= Ωlog
Cx

.

Corollary 4.3.2. For any point x ∈ X of type 2, Ω�XG,x/k
◦◦Ω�XG,x = Ωlog

Cx,x
. In

particular, for any form ω with ‖ω‖x ≤ 1 we obtain a reduction ω̃, which is a
meromorphic differential form on Cx and for any v ∈ Cx we have that

slopev‖ω‖ = −logordv(ω̃).

4.4. Reduction of the different. Consider now a morphism of nice curves f : Y →
X with points y ∈ Y and x = f(y). Then any a ∈ k with |a| = δf (y)−1 induces an

isometry f∗ΩX,x
∼−→ΩY,y and passing to reductions we obtain an isomorphism

φy : f̃∗y ΩCx,x → ΩCy,y.

This isomorphism is the main tool in [CTT16] to prove the balancing condition on
δf at y.

Remark 4.4.1. φy can be viewed as a meromorphic section of Dy := f̃∗y Ω−1
Cx,x

⊗
ΩCy,y and the proof in [CTT16] boils down to computing deg(Dy) by summing up
the orders of zeros and poles of φy.

Remark 4.4.2. Note that Dy is an invariant of the morphism f̃y : Cy → Cx,
namely it is the determinant sheaf of the cotangent complex LCy/Cx

.

Finally, one observes in [BT] that φy is defined rather uniquely.

Theorem 4.4.3. For any v ∈ Cy one has that slopev(δf ) = −ordv(φy) + nv − 1,

and this determines φy up to a scalar c̃ ∈ k̃×.

4.5. Restrictions on φy. Clearly, φy can not be an arbitrary meromorphic sec-
tion of Dy because its zeros and poles must satisfy some restrictions, see Theo-
rem 2.2.2(iii). To describe them we need a more explicit way to compute φy. The
main tool here will be the following result contained in [Tem10].

Theorem 4.5.1. If x ∈ X is of type 2 or 3, h ∈ H(x) and |h|p ≥ |ph| then there
exists c ∈ H(x) with |h|p = |h− cp|. Furthermore, in this case t = h− cp is a tame
parameter at x.
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This decomposition easily implies the following theorem from [BT].

Theorem 4.5.2. Assume that f : Y → X is generically étale of degree p, y ∈ Y (2),
and x = f(y). Choose a tame parameter z at x and find a presentation f∗z = cp+t′

in H(y) such that |t′| = |f∗z|p if |f∗z|p ≥ |pz| and |t′| ≤ |f∗z|p otherwise. Then

(i) If |f∗z|p > |pz| then φy = dt̃ ⊗ (f̃∗y dz̃)
−1, where t = t′/a for an a ∈ k with

|a| = |t′|.
(ii) If |f∗z|p ≤ |pz| then φy = (dt̃+ c̃p−1dc̃)⊗ (f̃∗y dz̃)

−1, where t′ = t/p.
In addition, the case (ii) takes place if and only if δ(y) = |p|, in particular, k is

of mixed characteristic.

Remark 4.5.3. This theorem implies all properties of the different function at
points of type 2. In particular, it is easy to see that all slopes are non-negative in

case (ii) due to the “logarithmic” term c̃p−1dc̃ ⊗ (f̃∗y dz̃)
−1. Note that c̃ = z̃1/p so

this term can be viewed as something like ( z̃
dz̃ )p−1, in particular, it has no zeros.

Finally, one proves in [BT] a lifting theorem for morphisms of degree p.

Theorem 4.5.4. If h : ΓY → ΓX is a finite morphism of metrized complexes of
curves enriched by a different function ΓY → [0, 1] and reduction forms φy at finite
vertices that satisfy the conditions of Theorems 4.5.2 and 4.4.3 then there exists
a morphism of nice curves Y → X whose skeleton with the different function and
reduction forms is h.

Remark 4.5.5. We cannot fix X in this theorem, but suspect that this should be
possible. The main idea is, similarly to [ABBR15], to lift maps over star neighbor-
hoods of vertices (by explicit formulas suggested by the above theorem) and then
glue the morphism over the annuli. The main point is that an étale morphism of
annuli A1 → A2 of degree p is determined by the different up to Aut(A1)×Aut(A2).
Unlike the tame case, we also have to use Aut(A2), and this forces us to play with
X as well.

Remark 4.5.6. Finally, one might wonder what is the situation with an arbitrary
degree. We expect that locally at y ∈ Y one should consider l reduction forms,

where niy = pl is the inseparability degree of H̃(y)/H̃(x). They are constructed
by splitting f into a composition and satisfy the same conditions as above. We
expect that any consistent data consisting of a finite map of metrized complexes
of curves, a profile function on ΓY , and reduction forms at finite vertices, should
admit a lifting to a morphism of nice curves.
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