NOTES OF MY TALK AT THE 2017 SIMONS SYMPOSIUM ON NON-ARCHIMEDEAN AND TROPICAL GEOMETRY

TONY YUE YU

Title: The Frobenius structure conjecture in dimension two (joint work with S. Keel)

Plan:

(1) The Frobenius structure conjecture of Gross-Hacking-Keel
(2) Main theorem
(3) Structure constants via non-archimedean geometry
(4) Finiteness theorems
(5) Compactification and extension

Acknowledgement: I would like to thank Matt Baker and Sam Payne for the invitation and the organization.

1. The Frobenius structure conjecture of Gross-Hacking-Keel

Setup:

- Geometric data:
- Y connected smooth projective variety $/ \mathbb{C}$
- $D \in\left|-K_{Y}\right|$ effective snc divisor, containing at least one 0 -stratum, supporting an ample divisor
- $U:=Y \backslash D$, called \log Calabi-Yau variety with maximal boundary
- Combinatoric data:
- B : dual intersection cone complex of D
- $B(\mathbb{Z})$: integer points (thought of as divisorial valuations on the function field of Y)
- Algebraic data:
- $R:=\mathbb{Z}[\mathrm{NE}(Y)], \mathrm{NE}(Y)$: monoid of curves in Y modulo numerical equivalence
- A : free R-module generated by $B(\mathbb{Z})$,

$$
A:=\bigoplus_{P \in B(\mathbb{Z})} R \cdot \theta_{P}
$$

GHK observe a natural R-multilinear map

$$
\langle, \ldots,\rangle: A^{n} \rightarrow R, \quad \text { for each } n \geq 2
$$

by counting rational curves in Y.
Let me first state their conjecture before describing the R-multilinear map.
Conjecture (GHK). (1) The R-multilinear map \langle, \ldots,$\rangle is non-degenerate.$
(2) The R-multilinear map comes from a Frobenius algebra structure, i.e., \exists ! commutative associative R-algebra structure on A such that

- $1_{A}=\theta_{0}$
- Coefficient of θ_{0} in $a_{1} \cdots a_{n}$ is equal to $\left\langle a_{1}, \ldots, a_{n}\right\rangle_{n}$.
(3) $\operatorname{Spec} A \rightarrow \operatorname{Spec} R$ restricted to $T_{\operatorname{Pic}(Y)}\left(:=\operatorname{Pic}(Y) \otimes \mathbb{G}_{\mathrm{m}}\right) \subset \operatorname{Spec} R$ is a family of affine log Calabi-Yau varieties (of same dimension as U) with maximal boundary, (called the mirror family of U).

Now let me describe the R-multilinear map:
Given $P_{1}, \ldots, P_{n} \in B(\mathbb{Z}), \beta \in \mathrm{NE}(Y)$, choose a toric blowup $\pi:(\widetilde{Y}, \widetilde{D}) \rightarrow(Y, D)$, (composition of blowups of boundary strata, $\widetilde{D}=\widetilde{Y} \backslash U$), such that P_{i} has divisorial center $D_{P_{i}} \subset \widetilde{D}$.

Let $c\left(P_{1}, \ldots, P_{n}, \beta\right):=$ number of $\left(\mathbb{P}^{1},\left(p_{1}, \ldots, p_{n}, r\right)\right) \xrightarrow{f} \widetilde{Y}$ such that

- $f^{*}\left(D_{P_{i}}\right)=m_{i} \cdot p_{i}$, where $P_{i}=m_{i} \cdot P_{i}^{\text {prim }}$
- $f_{*}\left[\mathbb{P}^{1}\right]=\beta$
- domain fixed general modulus
- $f(r)=$ a fixed general point $y \in \tilde{Y}$.

Proposition. The set above is a finite set. So the number is well-defined.

Remark. Although the conjecture is phrased in terms of the R-multilinear map, it is really about the geometry of rational curves in Y.

2. Main theorem

Theorem 1. The conjecture holds in dimension two.

3. Structure constants via non-archimedean geometry

We construct the multiplication on A by counting non-archimedean holomorphic disks (based on the techniques developed in my thesis).

For $P_{1}, \ldots, P_{n} \in B(\mathbb{Z})$, write

$$
\theta_{P_{1}} \cdot \theta_{P_{2}} \cdots \theta_{P_{n}}=\sum_{Q \in B(\mathbb{Z})}\left(\sum_{\gamma \in \operatorname{NE}(Y)} \chi\left(P_{1}, \ldots, P_{n}, Q, \gamma\right) z^{\gamma}\right) \theta_{Q}
$$

Goal: Define $\chi\left(P_{1}, \ldots, P_{n}, Q, \gamma\right)$ using non-archimedean geometry.
Let $k=\mathbb{C}((t)), U_{k}:=U \otimes_{\mathbb{C}} k$, and $U_{k}^{\text {an }} k$-analytic space (in the sense of Berkovich).
We have embedding $B \hookrightarrow U_{k}^{\text {an }}$, and retraction $\tau: U_{k}^{\text {an }} \rightarrow B$ (by Berkovich, Thuillier, Gubler-Rabinoff-Werner).
$\chi\left(P_{1}, \ldots, P_{n}, Q, \gamma\right)$ counts holomorphic disks in $\widetilde{Y}_{k}^{\text {an }},\left(\Delta,\left(p_{1}, \ldots, p_{n}, r\right)\right) \xrightarrow{f} \widetilde{Y}_{k}^{\text {an }}$, such that

- $f^{*}\left(D_{P_{i}}\right)=m_{i} \cdot p_{i}$
- $(\tau \circ f)(\partial \Delta)=$ a fixed point $b \in B$ near $\overrightarrow{O Q}$
- $(\tau \circ f)($ neighborhood of $\partial \Delta)=$ a segment starting from b in the direction Q
- class $=\gamma$
- domain fixed general modulus
- $f(r)=$ a fixed general point $y \in \tau^{-1}(b)$.

Big trouble: The space of all such holomorphic disks is ∞-dimensional.

Solution from my thesis: Impose a regularity condition on the boundary of our holomorphic disks. We ask: by analytic continuation at the boundary, our holomorphic disks extend all straight (i.e. its image in B is straight with respect to the \mathbb{Z}-affine structure on B).

Theorem 2. The space of holomorphic disks in $\widetilde{Y}_{k}^{\text {an }}$ satisfying all the conditions above (including the boundary regularity condition) is a finite set.

Trouble 2: Extending straight on the left side of $\overrightarrow{O Q}$ may differ from extending straight on the right side of $\overrightarrow{O Q}$. So our counts depend on the choice of b being on the left or right of $\overrightarrow{O Q}$?

Solution: Define another regularity condition: by analytic continuation at the boundary, our holomorphic disks extend all straight with respect to a toric model $\pi: Y \rightarrow \bar{Y}$, with \bar{Y} toric.

Theorem 3. Counts using "left regularity condition"
=Counts using "toric regularity condition"
$=$ Counts using "right regularity condition".
Corollary. The counts $\chi\left(P_{1}, \ldots, P_{n}, Q, \gamma\right)$ is well-defined.
Now the product $\theta_{P_{1}} \cdots \theta_{P_{n}}$ is well-defined. Natural question: commutativity? associativity?

Commutativity: easy from definition. Associativity: difficult theorem.
Theorem 4. The multiplication is associative.

4. Finiteness theorems

Natural question: Are the two sums in the multiplication formula finite? Otherwise we will only get a formal algebra instead of a genuine algebra.

Theorem 5 (Finiteness I). Given $P_{1}, \ldots, P_{n} \in B(\mathbb{Z}), \exists$ finitely many (Q, γ), such that $\chi\left(P_{1}, \ldots, P_{n}, Q, \gamma\right) \neq 0$.

Corollary. A is a commutative associative R-algebra.
Theorem 6 (Finiteness II). A is a finitely generated R-algebra.

5. Compactification and extension

We have constructed a family: $\operatorname{Spec} A \rightarrow \operatorname{Spec} R$.
In order to obtain more information about $\operatorname{Spec} A$, we need to compactify the fibers, and extend the family over a larger base.

Let us start with compactification:
Fix F ample divisor on Y such that supp $F=D$.
\rightsquigarrow Filtration on $A: A_{\leq s}:=\bigoplus_{\left\{F^{\operatorname{trop}}(Q) \leq s\right\}} R \cdot \theta_{Q}$.
\rightsquigarrow Subalgebra $\tilde{A} \subset A[T]$ generated by $\left\{a \cdot T^{s} \mid a \in A_{\leq s}\right\}$ as submodule.
$\rightsquigarrow \mathcal{X}:=\operatorname{Proj}(\widetilde{A}) \rightarrow \operatorname{Spec} R$ is a fiberwise compactification of $\operatorname{Spec} A \rightarrow \operatorname{Spec} R$.
Now we will extend our family over a larger base.
Note $R=\mathbb{Z}[\operatorname{NE}(Y)]$. Since the dual of the cone of curves is the nef cone, we have Spec $R=\operatorname{TV}(\operatorname{Nef}(Y))$.

This has a natural extension: $\operatorname{TV}(\operatorname{Nef}(Y)) \subset \operatorname{TV}(\operatorname{MoriFan}(Y))$, where $\operatorname{MoriFan}(Y)$ is a fan in $N^{1}(Y, \mathbb{R})$ defined as follows: For every birational map $\pi: Y \rightarrow Y^{\prime}$ with Y^{\prime} normal, we have a full dimensional cone
$\operatorname{Bogus}(\pi):=\left\{\pi^{*} N+E \mid N \in \operatorname{Nef}\left(Y^{\prime}, \mathbb{R}\right), E\right.$ effective divisor

$$
\text { supported on the exceptional locus }\} \subset N^{1}(Y, \mathbb{R})
$$

We define

$$
\operatorname{MoriFan}(Y):=\bigcup_{\pi: Y \rightarrow Y^{\prime}} \operatorname{Bogus}(\pi) \subset N^{1}(Y, \mathbb{R})
$$

Theorem 7. The compactified family $\mathcal{X} \rightarrow \operatorname{Spec} R$ extends over $\operatorname{TV}(\operatorname{MoriFan}(Y))$.
Theorem 8 (Final theorem of the talk). The extended family $(\mathcal{X}, \mathcal{Z}=(T=0)) \rightarrow$ TV(MoriFan (Y)) is a flat projective family of surfaces with effective Weil divisor, satisfying
(1) $\mathcal{Z} \rightarrow \operatorname{TV}(\operatorname{MoriFan}(Y))$ is a trivial family of cycles of rational curves.
(2) The fibers (X, Z) are semi-log canonical, and $K_{X}+Z$ is trivial.
(3) The fibers (X, Z) over $T_{\operatorname{Pic}(Y)} \subset \mathrm{TV}(\operatorname{MoriFan}(Y))$ are log canonical. The interior $V:=X \backslash Z$ is an affine canonical log Calabi-Yau surface with maximal boundary.

Tony Yue YU, Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, 91405 Orsay, France

E-mail address: yuyuetony@gmail.com

