NOTES OF MY TALK AT THE 2017 SIMONS SYMPOSIUM ON NON-ARCHIMEDEAN AND TROPICAL GEOMETRY

TONY YUE YU

Title: The Frobenius structure conjecture in dimension two (joint work with S. Keel)

Plan:

- (1) The Frobenius structure conjecture of Gross-Hacking-Keel
- (2) Main theorem
- (3) Structure constants via non-archimedean geometry
- (4) Finiteness theorems
- (5) Compactification and extension

Acknowledgement: I would like to thank Matt Baker and Sam Payne for the invitation and the organization.

1. The Frobenius structure conjecture of Gross-Hacking-Keel

Setup:

- Geometric data:
 - Y connected smooth projective variety $/\mathbb{C}$
 - $D \in |-K_Y|$ effective snc divisor, containing at least one 0-stratum, supporting an ample divisor
 - $U \coloneqq Y \setminus D$, called log Calabi-Yau variety with maximal boundary
- Combinatoric data:
 - $\circ~B$: dual intersection cone complex of D
 - $B(\mathbb{Z})$: integer points (thought of as divisorial valuations on the function field of Y)
- Algebraic data:
 - $R \coloneqq \mathbb{Z}[NE(Y)]$, NE(Y): monoid of curves in Y modulo numerical equivalence

Date: July 15, 2017.

• A: free R-module generated by $B(\mathbb{Z})$,

$$A \coloneqq \bigoplus_{P \in B(\mathbb{Z})} R \cdot \theta_P$$

GHK observe a natural R-multilinear map

$$\langle \ldots, \rangle \colon A^n \to R$$
, for each $n \ge 2$,

by counting rational curves in Y.

Let me first state their conjecture before describing the *R*-multilinear map.

Conjecture (GHK). (1) The R-multilinear map $\langle , \ldots, \rangle$ is non-degenerate.

- (2) The R-multilinear map comes from a Frobenius algebra structure, i.e., ∃! commutative associative R-algebra structure on A such that
 - $1_A = \theta_0$
 - Coefficient of θ_0 in $a_1 \cdots a_n$ is equal to $\langle a_1, \ldots, a_n \rangle_n$.
- (3) Spec $A \to$ Spec R restricted to $T_{\operatorname{Pic}(Y)} (:= \operatorname{Pic}(Y) \otimes \mathbb{G}_m) \subset$ Spec R is a family of affine log Calabi-Yau varieties (of same dimension as U) with maximal boundary, (called the mirror family of U).

Now let me describe the *R*-multilinear map:

Given $P_1, \ldots, P_n \in B(\mathbb{Z}), \beta \in NE(Y)$, choose a toric blowup $\pi : (\tilde{Y}, \tilde{D}) \to (Y, D)$, (composition of blowups of boundary strata, $\tilde{D} = \tilde{Y} \setminus U$), such that P_i has divisorial center $D_{P_i} \subset \tilde{D}$.

Let $c(P_1, \ldots, P_n, \beta) \coloneqq$ number of $\left(\mathbb{P}^1, (p_1, \ldots, p_n, r)\right) \xrightarrow{f} \widetilde{Y}$ such that

- $f^*(D_{P_i}) = m_i \cdot p_i$, where $P_i = m_i \cdot P_i^{\text{prim}}$
- $f_*[\mathbb{P}^1] = \beta$
- domain fixed general modulus
- f(r) = a fixed general point $y \in Y$.

Proposition. The set above is a finite set. So the number is well-defined.

TONY YUE YU

Remark. Although the conjecture is phrased in terms of the R-multilinear map, it is really about the geometry of rational curves in Y.

2. Main theorem

Theorem 1. The conjecture holds in dimension two.

3. Structure constants via non-archimedean geometry

We construct the multiplication on A by counting non-archimedean holomorphic disks (based on the techniques developed in my thesis).

For $P_1, \ldots, P_n \in B(\mathbb{Z})$, write

$$\theta_{P_1} \cdot \theta_{P_2} \cdots \theta_{P_n} = \sum_{Q \in B(\mathbb{Z})} \left(\sum_{\gamma \in \operatorname{NE}(Y)} \chi(P_1, \dots, P_n, Q, \gamma) z^{\gamma} \right) \theta_Q$$

Goal: Define $\chi(P_1, \ldots, P_n, Q, \gamma)$ using non-archimedean geometry.

Let $k = \mathbb{C}((t)), U_k := U \otimes_{\mathbb{C}} k$, and U_k^{an} k-analytic space (in the sense of Berkovich).

We have embedding $B \hookrightarrow U_k^{\text{an}}$, and retraction $\tau \colon U_k^{\text{an}} \to B$ (by Berkovich, Thuillier, Gubler-Rabinoff-Werner).

 $\chi(P_1,\ldots,P_n,Q,\gamma)$ counts holomorphic disks in $\widetilde{Y}_k^{\mathrm{an}}$, $(\Delta,(p_1,\ldots,p_n,r)) \xrightarrow{f} \widetilde{Y}_k^{\mathrm{an}}$, such that

- $f^*(D_{P_i}) = m_i \cdot p_i$
- $(\tau \circ f)(\partial \Delta) =$ a fixed point $b \in B$ near \overrightarrow{OQ}
- $(\tau \circ f)$ (neighborhood of $\partial \Delta$) = a segment starting from b in the direction Q
- class = γ
- domain fixed general modulus
- f(r) = a fixed general point $y \in \tau^{-1}(b)$.

Big trouble: The space of all such holomorphic disks is ∞ -dimensional.

TONY YUE YU

Solution from my thesis: Impose a regularity condition on the boundary of our holomorphic disks. We ask: by analytic continuation at the boundary, our holomorphic disks extend all straight (i.e. its image in B is straight with respect to the \mathbb{Z} -affine structure on B).

Theorem 2. The space of holomorphic disks in \tilde{Y}_k^{an} satisfying all the conditions above (including the boundary regularity condition) is a finite set.

Trouble 2: Extending straight on the left side of \overrightarrow{OQ} may differ from extending straight on the right side of \overrightarrow{OQ} . So our counts depend on the choice of b being on the left or right of \overrightarrow{OQ} ?

Solution: Define another regularity condition: by analytic continuation at the boundary, our holomorphic disks extend all straight with respect to a toric model $\pi: Y \to \overline{Y}$, with \overline{Y} toric.

Theorem 3. Counts using "left regularity condition" =Counts using "toric regularity condition" =Counts using "right regularity condition".

Corollary. The counts $\chi(P_1, \ldots, P_n, Q, \gamma)$ is well-defined.

Now the product $\theta_{P_1} \cdots \theta_{P_n}$ is well-defined. Natural question: commutativity? associativity?

Commutativity: easy from definition. Associativity: difficult theorem.

Theorem 4. The multiplication is associative.

4. Finiteness theorems

Natural question: Are the two sums in the multiplication formula finite? Otherwise we will only get a formal algebra instead of a genuine algebra.

Theorem 5 (Finiteness I). Given $P_1, \ldots, P_n \in B(\mathbb{Z})$, \exists finitely many (Q, γ) , such that $\chi(P_1, \ldots, P_n, Q, \gamma) \neq 0$.

Corollary. A is a commutative associative R-algebra.

Theorem 6 (Finiteness II). A is a finitely generated R-algebra.

4

TONY YUE YU

5. Compactification and extension

We have constructed a family: Spec $A \to \text{Spec } R$.

In order to obtain more information about $\operatorname{Spec} A$, we need to compactify the fibers, and extend the family over a larger base.

Let us start with compactification:

Fix F ample divisor on Y such that supp F = D.

 \rightsquigarrow Filtration on A: $A_{\leq s} \coloneqq \bigoplus_{\{F^{\operatorname{trop}}(Q) \leq s\}} R \cdot \theta_Q$.

 \rightsquigarrow Subalgebra $\widetilde{A} \subset A[T]$ generated by $\{a \cdot T^s \mid a \in A_{\leq s}\}$ as submodule.

 $\rightsquigarrow \mathcal{X} \coloneqq \operatorname{Proj}(\widetilde{A}) \to \operatorname{Spec} R$ is a fiberwise compactification of $\operatorname{Spec} A \to \operatorname{Spec} R$.

Now we will extend our family over a larger base.

Note $R = \mathbb{Z}[NE(Y)]$. Since the dual of the cone of curves is the nef cone, we have Spec R = TV(Nef(Y)).

This has a natural extension: $\operatorname{TV}(\operatorname{Nef}(Y)) \subset \operatorname{TV}(\operatorname{MoriFan}(Y))$, where $\operatorname{MoriFan}(Y)$ is a fan in $N^1(Y, \mathbb{R})$ defined as follows: For every birational map $\pi \colon Y \to Y'$ with Y'normal, we have a full dimensional cone

$$Bogus(\pi) \coloneqq \left\{ \pi^* N + E \mid N \in Nef(Y', \mathbb{R}), E \text{ effective divisor} \\ supported on the exceptional locus \right\} \subset N^1(Y, \mathbb{R}).$$

We define

$$\operatorname{MoriFan}(Y) \coloneqq \bigcup_{\pi \colon Y \to Y'} \operatorname{Bogus}(\pi) \subset N^1(Y, \mathbb{R}).$$

Theorem 7. The compactified family $\mathcal{X} \to \operatorname{Spec} R$ extends over $\operatorname{TV}(\operatorname{MoriFan}(Y))$.

Theorem 8 (Final theorem of the talk). The extended family $(\mathcal{X}, \mathcal{Z} = (T = 0)) \rightarrow TV(MoriFan(Y))$ is a flat projective family of surfaces with effective Weil divisor, satisfying

- (1) $\mathcal{Z} \to \mathrm{TV}(\mathrm{MoriFan}(Y))$ is a trivial family of cycles of rational curves.
- (2) The fibers (X, Z) are semi-log canonical, and $K_X + Z$ is trivial.
- (3) The fibers (X, Z) over $T_{\operatorname{Pic}(Y)} \subset \operatorname{TV}(\operatorname{MoriFan}(Y))$ are log canonical. The interior $V \coloneqq X \setminus Z$ is an affine canonical log Calabi-Yau surface with maximal boundary.

Tony Yue YU, Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, 91405 Orsay, France

E-mail address: yuyuetony@gmail.com