Date: 01/17

We'll be talking about SL_2 over different fields: $k = \mathbf{C}, \mathbf{R}, \mathbf{F}_p, \mathbf{Q}_p$. The most fundamental group in Lie theory: simplest nonabelian group, building block for other simple groups.

Appears:

- number theory: modular forms $(SL_2(\mathbf{R}), SL_2(\mathbf{Q}_n))$
- hyperbolic geometry: $PSL_2(\mathbf{R}) = Iso(\mathbf{H}^2), PSL_2(\mathbf{C}) = Iso(\mathbf{H}^3)$
- algebraic geometry: Lefschetz theorem: $H^*(X, \mathbf{C})$ for X compact Kähler smooth projective variety over \mathbf{C}) carries an action of $SL_2(\mathbf{C})$.
- analysis: special functions (Bessel, hypergeometric, etc) have interpretation in terms of SL_2 . Huygens principle holds in n dimensions if some rep of SL_2 is finite-dimensional. Reference: Howe-Tan, Nonabelian Harmonic Analysis
- physics: Lorentz group is $SL_2(\mathbf{C})$. Particles are reps of $SL_2(\mathbf{C})$.

References: Fulton-Harris, Representation Theory; Etingof, Representation Theory; Carter-Macdonald-Segal, Lie groups; Lang, $SL_2(\mathbf{R})$.

G a group, V a vector space over \mathbf{C} . (V, ρ) , where $\rho : G \to \operatorname{Aut}(V)$ a homomorphism.

Let V, W be two reps of G, a map $\phi : V \to W$ is a G-homomorphism if $g \cdot \phi(v) = \phi(g \cdot v)$.

 $\operatorname{Hom}_G(V, W) = \operatorname{collection} \text{ of such } \phi, \text{ a vector space.}$

Definition. G a topological group (Lie group) if G is a topological space (manifold) and $G \times G \to G$ and $G \xrightarrow{i} G$ are continuous (smooth).

For now V is finite-dimensional, so no topological issues there.

A representation of a topological group is a map $G \to \operatorname{Aut} V$, which is continuous.

In other words, let $v \in V$, $v^* \in V^*$. Can construct a function f_{v,v^*} on G: $f_{v,v^*}(g) = v^*(g \cdot v) \in \mathbf{C}$ called a matrix element.

 $V \cong \mathbf{C}^n$, $\{e_i\}$ is a basis, $\{e_i^*\}$ the dual basis. $f_{e_j,e_i^*}(g) = ij$ entry of matrix $\rho(g) \in \mathrm{Aut}(\mathbf{C}^n) \subset \mathrm{Mat}_{n \times n}(\mathbf{C})$.

This gives a map $V \otimes V^* \to \operatorname{Fun}(G)$. Can also identify $\operatorname{End}(V) \cong V \otimes V^*$.

To specify a class of representations, we specify the class of functions on G that we allow.

V, W two reps of G, can construct $V \oplus W$ a new representation. This leads to a basic question: is a representation a direct sum?

Definition. V is irreducible if it has no nontrivial subrepresentations (i.e. no G-invariant subspaces).

Definition. V is indecomposable if we can't write $V \cong W_1 \oplus W_2$.

Let $G = \mathbf{C}$, take $V = \mathbf{C}^2$. $G \subset GL_2(\mathbf{C})$ as upper-triangular matrices. Then W spanned by the first basis vector is a subrep, but it has no complement. So, V is indecomposable, but not irreducible.

The standard representation of $SL_2(\mathbf{C})$ on \mathbf{C}^2 is irreducible.

compact abelian groups compact abelian Lie groups $(SL_2, ...)$

For compact groups irreducible = indecomposable. For abelian groups irreps are 1-dimensional.

Theorem (Schur's Lemma). (1) V_1, V_2 are two finite-dimensional irreps. Let $\phi: V_1 \to V_2$ be a G-map, then ϕ is either 0 or ϕ is an isomorphism.

- (2) Let $\phi: V_1 \to V_1$, then $\phi = \lambda \cdot id$, $\lambda \in \mathbf{C}$.
- *Proof.* (1) Observe, that $\operatorname{Ker} \phi \subset V_1$ and $\Im \phi \subset V_2$ are G-invariant subspaces. Since V_1 and V_2 are irreps, then these are either 0 or everything.
 - (2) Let $\lambda \in \mathbf{C}$. Then $\operatorname{Ker}(\phi \lambda \cdot \operatorname{id})$ is a G-invariant subspace. There is at least one eigenvalue, so this is nonzero, i.e. everything for some λ .

For \mathbb{C}^2 and $(\begin{array}{cc} 1 & * \\ 0 & 1 \end{array})$ the representation, $(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array})$ commutes with everything, but is not scalar.

Corollary. G abelian, V a finite-dimensional irrep, then $\dim V = 1$.

Proof. For any $g \in G$, $\rho(g) \in \operatorname{Aut}_G(V)$ commutes with everything, so by Schur's lemma is scalar. Any subspace is G-invariant, so V is 1-dimensional.

Corollary. More generally, V is an irrep and $z \in Z(G)$ (center of G), then z acts by scalar multiplication.

I.e. V has a central character: $\chi: Z(G) \to \mathbf{C}^*$, s.t. $z \cdot v = \chi(z)v$.

Definition. V is completely decomposable (semisimple) if $V \cong V_1 \oplus V_2 \oplus ... \oplus V_k$ a direct sum of irreducibles.

Proposition. G a finite group, then any rep V is completely decomposable.

Definition. V is unitarizable if $\exists \langle, \rangle$ a Hermitian positive-definite inner product, which is G-invariant.

Here G-invariance means $\langle g \cdot v, g \cdot w \rangle = \langle v, w \rangle$.

Proposition. A unitarizable representation is semisimple.

Proof. $W \subset V$, then $W^{\perp} \subset W$ is also G-invariant, then $V = W \oplus W^{\perp}$. By induction, it is semisimple.

Proposition. G finite, V finite-dimensional, then V is unitarizable.

Proof. Start with any \langle , \rangle_0 on V. Define $\langle , \rangle = av(\langle , \rangle_0) = \frac{1}{|G|} \sum_{g \in G} g \cdot \langle , \rangle_0$, which is G-invariant.

$$\langle v, v \rangle = \frac{1}{|G|} \sum \langle gv, gv \rangle_0$$
 is nonzero, so it is nondegenerate.

For G compact, the same holds. Replace $\frac{1}{|G|}\sum_g$ by integration with respect to the Haar measure: $\int_G d\mu$. E.g. $G = S^1$ has $d\mu = \frac{1}{2\pi}d\theta$.

Think of the integral as a map $C(G, \mathbf{R}) \to \mathbf{R}$, which satisfies some properties, but in particular is left-invariant.

Let G be a Lie group. Take any volume form at the identity $dx_1 \wedge ... \wedge dx_n \in \wedge^{top} T_1^*G$ and then translate it using $L_{g^{-1}}$. Get a top form on G and then normalize it to have $\int_G d\mu = 1$.

For G compact $d\mu$ is actually both left and right-invariant:

$$\int_G f(\cdot g) d\mu : G \to \mathbf{R}_+^*,$$

which has to be trivial.

How to decompose representations. First look for the trivial rep. For V assign its G-invariants $V^G = \{v \in V : g \cdot v = v \mid \forall g \in G\}$. $V^G = \text{Hom}_G(\mathbf{C}, V)$.

For G compact, we have $av_V: V \to V^G$, where $av_V(v) = \int_G g \cdot v d\mu$. It is an idempotent: $av_V \circ av_V = av_V$. Then $V = V^G \oplus \operatorname{Ker}(av_V)$.

Given V a rep and W an irrep. Consider $\operatorname{Hom}_G(W,V)$, these are all injective.

(1)
$$\operatorname{Hom}_G(W, V) \otimes W \stackrel{ev}{\to} V$$

$$(2) \phi, w \mapsto \phi(w)$$

Proposition. ev is injective

So, $\operatorname{Hom}_G(W,V) \otimes W \hookrightarrow V$. If V is completely decomposable, $V = \ldots \oplus W \oplus W \oplus \ldots \oplus W \oplus \ldots$, we picked out all W summands.

$$V \cong \bigoplus_{Wirreducibles} \operatorname{Hom}_G(W, V) \otimes W.$$

Here $\mathrm{Hom}_G(W,V)$ is the multiplicity space and $\mathrm{Hom}_G(W,V)\otimes W$ is a W-isotipic component.

Date: 01/19. Fourier series.

Reference: Terry Tao, The Fourier Transform (on his blog).

$$G = \mathbf{T} = S^1 = U(1) = SO(2).$$

On S^1 we have a Haar measure $\frac{1}{2\pi}d\theta$.

Look at $H = L^2(\mathbf{T})$, a representation of \mathbf{T} by left translation. Explicitly, for $f \in H$, $\alpha \in \mathbf{T}$ we have

$$(\alpha \cdot f)(\theta) = f(\theta - \alpha),$$

pull back function f under the translations $\mathbf{T} \to \mathbf{T}$. These are lots of commuting operators, can try to simultaneously diagonalize them. Equivalently, decompose H into irreducibles. $H = W_1 \oplus W_1 \oplus ... W_2 \oplus ... W_3 \oplus ...$

What are the irreducible representations of **T**? It is a homomorphism $\mathbf{T} \to \mathbf{C}^{\times}$. Since **T** is compact, it factors through $\chi : \mathbf{T} \to U(1)$. Such a homomorphism is called a (unitary) character.

 $\chi(\theta_1 + \theta_2) = \chi(\theta_1)\chi(\theta_2)$. The solutions are given by $\chi_n(\theta) = e^{2\pi i n \theta}$ for $n \in \mathbf{Z}$. Here we think $\mathbf{T} = \mathbf{R}/\mathbf{Z}$.

 $H_{\chi_n} = \chi_n$ -eigenspace (isotypic component) in H, here each α acts by $\chi_n(\alpha)$.

 $(\alpha \cdot \chi_n)(\theta) = e^{2\pi i n(\theta - \alpha)} = e^{-2\pi i n \alpha} e^{2\pi i n \theta} = \chi_{-n}(\alpha) \chi_n(\theta). \text{ So, } H_{\chi_n} = \mathbf{C}\chi_{-n}.$

$$H \supset \bigoplus_{n \in \mathbf{Z}} \mathbf{C} \chi_{-n} = \oplus H_{\chi_n}.$$

 $f \in H = L^2(S^1)$. Can take its component by projecting f onto χ_{-n} : $f \mapsto \langle f, \chi_{-n} \rangle \chi_{-n}$.

$$\langle f, \chi_{-n} \rangle = \int f(\theta) \overline{\chi_{-n}(\theta)} d\theta = \int f(\theta) \chi_n(\theta) d\theta = av(f\chi_n).$$

Digression: V, W two representations of a group G, can construct a new representation $V \otimes W$ (for concreteness both are finite-dimensional). The action is given by $g \cdot (v \otimes w) = g \cdot v \otimes g \cdot w$.

Now, let V be a rep of \mathbf{T} , construct $V \otimes (\mathbf{C}\chi_n)$. As a vector spaces, these are the same. The action is new: $(g \cdot v)_{new} = (g \cdot v)\chi_{-n}(g)$.

So,
$$V_{\chi_n} = (V \otimes \mathbf{C}\chi_n)^{\mathbf{T}}$$
.

$$(V \otimes \mathbf{C}\chi_n)^{\mathbf{T}} \stackrel{\sim}{\leftarrow} V_{\chi_n}$$

$$av \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$V \otimes \mathbf{C}\chi_n \longleftarrow V$$

If V a finite dimensional,

$$f = \sum_{n \in \mathbf{Z}} \hat{f}(n) \chi_{-n},$$

where $\hat{f}(n) = \langle f, \chi_{-n} \rangle = \int f(\theta) e^{2\pi i n \theta} d\theta$.

Let $H = L^2(\mathbf{T})$ or any other representation of \mathbf{T} . Can produce the finite part

$$H^{fin} = \{ v \in H : span(\alpha \cdot v) \text{ is finite-dimensional} \} = \bigoplus V_{\chi_n}.$$

In the case $L^2(\mathbf{T})^{fin} = \mathbf{C}[z, z^{-1}]$, where $z = e^{2\pi i \theta}$. $L^2(\mathbf{T})^{fin} \subset L^2(\mathbf{T})$ is dense.

We constructed

$$L^2(S^1) \to L^2(\mathbf{Z}) = \ell^2$$

 $f \mapsto \hat{f} = \{\hat{f}(n) : n \in \mathbf{Z}\}$

For any function space (or any V) $V^{fin} \subset V$ is dense.

For example, in $C^{\infty}(S^1)$ $\hat{f}(n) \to 0$ is faster than any polynomial. In $C^{\omega}(S^1)$ $\hat{f}(n) \to 0$ exponentially.

Dually, in $C^{-\infty}(S^1)$ (distributions) \hat{f}^n) $\to \infty$ at most polynomially. For hyperfunctions $C^{-\omega}(S^1)$ we have $\hat{f}(n) \to \infty$ at most exponentially.

Generalization: Pontryagin duality. The same for locally-compact abelian (LCA) groups.

We'll look at G being finite, compact, discrete.

- Finite: products of \mathbf{Z}/n 's.
- Tori: products of S^{1} 's.
- Lattices: products of **Z**'s.
- ullet Euclidean space: products of ${f R}$'s.
- $\bullet \ \mathbf{Q}_p, \mathbf{Z}_p, \mathbf{A}$

For G an LCA, construct $\hat{G} = \text{Hom}(G, \mathbf{T})$, collection of continuous unitary characters. For G compact $\hat{G} = \text{Hom}(G, \mathbf{C}^{\times})$.

 \hat{G} is a topological group: the topology is given by a compact-open topology from $Map(G, \mathbf{C})$. $(\chi_1 \cdot \chi_2)(g) = \chi_1(g)\chi_2(g)$, also abelian. Can prove that it's again locally-compact.

Rep theory POV: χ is the same as a 1d unitary representation of the group. $L_{\chi_1} \otimes L_{\chi_2} = L_{\chi_1 \chi_2}$.

For example, $G = \mathbf{Z}/n$, think of G as a subset of \mathbf{C}^{\times} . The characters are given by raising to the k'th power, these are parametrized by $k \in \mathbf{Z}/n$. So,

$$\hat{G} \cong \mathbf{Z}/n.$$

Therefore, for G finite $G \cong \hat{G}$.

For $G = S^1 = \mathbf{T}$ we have $\hat{G} = \mathbf{Z}$. For $G = \mathbf{Z}$, $\hat{G} = \{\mathbf{Z} \to S^1\} = S^1$ since \mathbf{Z} is cyclic.

Theorem. $G \stackrel{\sim}{\to} \hat{\hat{G}}$

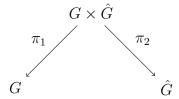
The map is given as follows. $g \in G$, $\chi \in \hat{G}$. Let $\chi(g) = \langle \chi, g \rangle \in S^1$. This is a function $G \times \hat{G} \to \mathbf{T}$.

Claim: $\chi \mapsto \langle \chi, g \rangle$ as a S^1 -valued function on \hat{G} is a character of the group \hat{G} . Indeed, $\langle \chi_1 \chi_2, g \rangle = \chi_1(g) \cdot \chi_2(g) = \langle \chi_1, g \rangle \langle \chi_2, g \rangle$.

For G compact, \hat{G} is discrete.

Let's compute $\hat{\mathbf{R}}$. An element $t \in \hat{\mathbf{R}}$ is a map $\mathbf{R} \to \mathbf{T}$. The answer is $\chi_t(x) = e^{2\pi i t x}$.

So, for V a vector space $\hat{V} = V^*$ under $v, v^* \mapsto e^{2\pi i \langle v^*, v \rangle}$.



Can do an integral transform $\pi_1^*(f)(g,\chi) = f(g)$. Explicitly,

$$\operatorname{Fun}(G) \to \operatorname{Fun}(\hat{G})$$

$$f \mapsto \hat{f}(\chi) = \int_{G} f(g) \langle \chi, g \rangle dg$$

Theorem (Plancherel). $L^2(G) \xrightarrow{\sim} L^2(\hat{G})$ is an isometry.

For $G = \mathbf{T}$, the Fourier coefficients were defined as $\hat{f}(n) = \int f(\theta) \chi_n(\theta) d\theta$, where we can think of $n \in \mathbf{Z} = \hat{S}^1$.

If G is compact, \hat{G} is discrete, so a function on \hat{G} is a discrete list of numbers. Then $f \mapsto \hat{f}$ is just writing (finite) functions in the basis of eigenfunctions, i.e. decomposing

$$L^2(G)^{fin} = \bigoplus_{\chi \in \hat{G}} \mathbf{C}\chi.$$

Date: 01/24.

Reference: Ramakrishnan-Valenza, Fourier analysis on number fields (GTM 186, Springer).

Fourier transform/Pontrjagin duality.

The goal: "solve" representation theory of a locally compact abelian group G. I.e. any $g \in G$ acts on $\operatorname{Fun}(G)$. We would like to simultaneously diagonalize all these. The same idea works for any other representation.

Let V be a finite-dimensional vector space. $\mathcal{O}_1, ..., \mathcal{O}_k$ matrices in End V, all commute. Want to find a set X (join spectrum) and a bunch of functions $f_1, ..., f_k \in \text{Fun}(X)$, and decompose V over X:

$$V = \bigoplus_{x \in X} V_x,$$

such that \mathcal{O}_i acts on V by multiplication by f_i : write $v \in V$ as $v = \oplus v_x$, where $v_x \in V_x$, then $\mathcal{O}_i \cdot v = f_i v = \oplus f_i(x)v_x$.

For example, let \mathcal{O}_i are diagonal matrices on \mathbf{C}^n . Then X = n points, then $\mathbf{C}^n = \bigoplus_{x \in X} \mathbf{C}$.

X= all common eigenvalues of \mathcal{O} , i.e. for any $x\in X$ we have an assignment $\mathcal{O}_i\mapsto f_i(x)\in\mathbf{C}$

$$V_x = \{ v \in V : \mathcal{O}_i \cdot v = f_i(x)v \}.$$

For X a set, Fun(X) is a ring and is diagonalized in the basis of δ -functions δ_x for $x \in X$. That is, $f\delta_x = f(x)\delta_x$.

Let $G = S^1$, V a finite-dimensional representation. Then $V = \bigoplus_{n \in \mathbf{Z}} V_n$ (here $X = \mathbf{Z}$). For $\theta \in S^1$ and $v \in V_n$, $\theta \cdot v = e^{2\pi i n \theta} v$. For $\theta \in S^1$ we have a function $n \mapsto e^{2\pi i n \theta} \in \operatorname{Fun}(\mathbf{Z})$.

More generally, for $V = \operatorname{Fun}(S^1)$ we know that $V = \oplus \hat{V}_n$, where $V_n \cong \mathbf{C}e^{-2\pi i n\theta}$.

For G an LCA group (finite, S^1 , \mathbf{R}).

Definition. The Pontrjagin dual group $\hat{G} = \text{Hom}_{cont}(G, S^1)$.

For $g \in G$ we have a function on \hat{G} : $\langle -, g \rangle$. For any $\chi \in \hat{G}$ we assign $\langle \chi, g \rangle = \chi(g)$.

Lemma. This assignment defines a group homomorphism $G \to \operatorname{Fun}(\hat{G})^{\times}$.

Proof. Check:
$$g = hk$$
. $\langle -, hk \rangle = \langle -h \rangle \langle -, k \rangle$.
Similarly, $\langle -, g^{-1} \rangle = \{ \chi \mapsto \chi(g^{-1}) = \chi(g)^{-1} \} = \langle , g \rangle^{-1}$.

 $V = \operatorname{Fun}(\hat{G})$ forms a representation of G: $g \cdot f = \langle -, g \rangle f$ in which all g's are simultaneously diagonalized. Then $V = \bigoplus_{\chi \in \hat{G}} V_{\chi}$, where $V_{\chi} = \mathbf{C} \cdot \delta_{\chi}$.

Recall the Plancherel theorem: $L^2(G) \xrightarrow{\sim} L^2(\hat{G})$ as G-representations. Here isometry means

$$\int_{G} dh dg = \int_{\hat{G}} \hat{f} \hat{h} d\hat{g}.$$

So, the Fourier transform diagonalizes the regular representation. For $f \in \text{Fun}(G)$ the Fourier transform $\hat{f}(\chi) = \int_G f(g) \overline{\chi(g)} dg = \langle f, \chi \rangle_{L^2}$.

Defining properties:

- (1) Characters \in Fun(G) are mapped to δ -functions \in Fun (\hat{G}) . I.e. $\chi \mapsto \delta_{\chi} \ (\chi \in \hat{G})$. δ -functions \in Fun(G) are mapped to characters \in Fun (\hat{G}) . I.e. $g \in G$ is mapped to $\langle -, g \rangle \in (\hat{G})$. $\langle \chi_1 \chi_2, g \rangle = \langle \chi_1, g \rangle \langle \chi_2, g \rangle$.
- (2) Translations on G are mapped to multiplication operators (by characters) on \hat{G} .

One might object that neither $e^{2\pi ixt}$ nor δ_t are L^2 -functions. Instead, consider the space $\mathcal{S}(\mathbf{R})$ of Schwarz functions. Then both $e^{2\pi ixt}$ and δ_t are in $\mathcal{S}(\mathbf{R})^*$ (tempered distributions).

Question: why is $()^{\vee}$: Fun $(G) \to$ Fun(G) a map of representations? $g \in G$, $(\tau_g f)(h) = f(hg^{-1})$. Want to compute

$$\hat{\tau_x}f(t) = \int_G \tau_x f(y)\langle t, y\rangle dy = \int_G f(y-x)\langle t, y\rangle dy.$$

Let z = y - x, then the integral is

$$= \int_{G} f(z)\langle t, z + x \rangle dz$$
$$= \int_{G} f(z)\langle t, z \rangle \langle t, x \rangle dz$$
$$= \langle t, x \rangle \hat{f}(t)$$

Group algebras. G finite. Fun $(G) = \mathbb{C}G$ has an associative multiplication by convolution:

$$(f \star h)(g) = \sum_{q_1 q_2 = g} f(g_1)h(g_2) = \sum_{q_1} f(g_1)h(gg_1^{-1}).$$

Convolution is characterized by $\delta_{g_1} \star \delta_{g_2} = \delta_{g_1g_2}$. $f = \sum f(g_i)\delta_{g_i}$. As a vector space, $\mathbf{C}G$ is a linear span of $g \in G$.

We have the following maps:

$$G \times G \xrightarrow{\mu} G$$

$$\operatorname{Fun}(G \times G) \xleftarrow{\mu^*} \operatorname{Fun}(G)$$

$$\operatorname{Fun}(G \times G)^* \operatorname{Fun}(G)^* \cong \operatorname{Fun}(G)$$

$$f, h \mapsto f \star h$$

Let V be a representation of G. Then for any $g \in G$ $g \cdot v = \delta_g \star v$. Can extend this to the group algebra:

$$\sum_{g \in G} f(g)g \cdot v =: f \star v,$$

this makes V into a module over $\mathbb{C}G$.

Exercise: check that $(h \star f) \star v = h \star (f \star v)$.

Conversely, given a ${\bf C}G$ -module, we get a representation of G via action by δ -functions.

Let G be a locally compact with μ , a Haar measure. Can define the convolution:

$$(f \star h)(x) = \int_G f(y)h(x - y)dy.$$

This makes $C_c(G)$ (continuous functions with a compact support) or $L^1(G)$ into associative algebras.

Proposition. Convolution is mapped to multiplication under the Fourier transform.

$$f \, \hat{\star} \, g = \hat{f} \hat{g}.$$

For $f = \delta_g$, the convolution $f \star - = \tau_g$, so for finite groups if follows from what we had before.

That is, the Fourier transform diagonalizes the action of the entire group algebra on Fun(G).

 $\mathcal{F} = \operatorname{Fun}(G)$ for G finite, or $\operatorname{Fun}(G)^{fin}$ (finite linear combinations of characters) for G compact. For example, for $S^1 \mathcal{F} \cong \mathbf{C}[z, z^{-1}]$ for $z = e^{2\pi i x}$.

 (\mathcal{F}, \star) is a commutative ring. For $\chi \in \hat{G}$ a character of G, can think of it as a 1-dimensional representation of G. Equivalently, it is a homomorphism $\chi : \mathcal{F} \to \mathbf{C}$ (extend by linearity). The other direction works as well (by restriction). Another way to think of it, it's a maximal ideal in \mathcal{F} (Ker $(\chi) \subset \mathcal{F}$). I.e. a point of Spec (\mathcal{F}) .

More generally, for $R = \operatorname{Fun}(X)$ a ring with multiplication. $x \in X$ gives rise to a maximal ideal in R (kernel of the evaluation at x).

E.g. $G = S^1$, $\mathcal{F} = (\mathbf{C}[z, z^{-1}], \star) = (span\{e^{2\pi inx}\}, \star)$. Moreover, $\mathcal{F} \cong \operatorname{Fun}_{fin}(\mathbf{Z})$.

For V a representation of G we get an \mathcal{F} -module, i.e. a module for the ring of functions on $\hat{G} = \operatorname{Spec} \mathcal{F}$.

Date: 01/26. Spectral decomposition

V finite-dimensional vector space. $T \in \text{End}(V)$. Make V into a $\mathbb{C}[x]$ -module: x acts as T.

Spec $\mathbf{C}[x] = \mathbf{C}$, affine line: maximal ideals are of the form $(x - \lambda)$ for $\lambda \in \mathbf{C}$. Equivalently, these are homomorphisms $\mathbf{C}[x] \stackrel{eval_{\lambda}}{\to} \mathbf{C}$ (aka 1-dimensional modules).

$$I \subset \mathbf{C}[x] \twoheadrightarrow \mathbf{C}[T] \subset \mathrm{End}\,V$$
,

so $\mathbf{C}[T]$ polynomial functions on spectrum Spec $T \subset \mathbf{C}$.

Jordan form: $V \cong \bigoplus_i \mathbf{C}[x]/(x-\lambda_i)^{n_i}$.

One of these pieces is a Jordan block of the form

$$\begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & & \\ & & \cdots & & & \\ & & & \lambda & 1 \\ & & & & \lambda \end{pmatrix}.$$

Remark: it is a principal example of a module which is not semisimple, but indecomposable.

V finite-dimensional vector space with an endomorphism T. It is the same as a finite-dimensional representation of \mathbf{R} : $x \in \mathbf{R}$ acts on V as $e^{ixT} = \mathrm{id} + ixT + \frac{(ixT)^2}{2!} + \dots$

$$iT = \frac{d}{dx}\rho(x)|_{x=0}.$$

Remark: T is self-adjoint $\Leftrightarrow \rho$ unitary.

 $\mathbf{C}e^{isx} \subset \operatorname{Fun}(\mathbf{R})$ is an eigenspace for translations: $\tau_y e^{isx} = e^{-isy}e^{isx}$.

$$\tau_y(xe^{isx}) = (x - y)e^{is(x - y)}$$
$$= e^{-isy}(xe^{isx}) - ye^{isy}(e^{isx}),$$

i.e. xe^{isx} is a part of a 2-dimensional representation.

$$\tau_y \left(\begin{array}{c} e^{isx} \\ xe^{isx} \end{array} \right) = \left(\begin{array}{cc} e^{-isy} & 0 \\ -ye^{-isy} & e^{-isy} \end{array} \right) \left(\begin{array}{c} e^{isx} \\ xe^{isx} \end{array} \right)$$

So,

$$-i\frac{d}{dy}(\tau_y)|_{y=0} = -i\begin{pmatrix} -is & 0\\ -1 & -is \end{pmatrix}.$$

 $e^{\hat{i}st} = \delta_s(t)$, then $(t-s)\delta_s(t) = 0$. So, this is the same as $\mathbf{C}[t]/(t-s)$ as a $\mathbf{C}[t]$ -module.

Question: what's the analytic realization of $\mathbf{C}[t]/(t-s)^2$? $\delta'_s(f(t)) = -\delta_s(f'(t)) = -f'(s)$.

$$t \cdot \delta'_{s}(t) = t \partial \delta_{s}(t)$$

$$= \partial t \delta_{s}(t) - \delta_{s}(t)$$

$$= s \delta'_{s} - \delta_{s}$$

Alternatively,

$$t\delta'_s(f(t)) = -(tf)'(s)$$
$$= -sf'(s) - f(s)$$

That means:

$$t\begin{pmatrix} \delta_s \\ \delta_s' \end{pmatrix} = \begin{pmatrix} s & 0 \\ -1 & s \end{pmatrix} \begin{pmatrix} \delta_s \\ \delta_s' \end{pmatrix}$$

Under Fourier transform,

$$\begin{pmatrix} e^{isx} \\ xe^{isx} \end{pmatrix} \leftrightarrow \begin{pmatrix} \delta_s \\ \delta'_s \end{pmatrix} \in \mathcal{S}(\mathbf{R})^*.$$

Recall, that

characters \leftrightarrow points (delta-functions) translations $\tau_y \leftrightarrow$ multiplication by a phase convolution \leftrightarrow multiplication differentiation \leftrightarrow multiplication by coordinate

Case of S^1 : $\hat{\partial}_x = 2\pi i t$. Then

$$\partial_x e^{2\pi i n x} = 2\pi i n e^{2\pi i n x}.$$

Under Fourier transform, $S^1 \to \mathbf{Z}$, so we are multiplying by a function on \mathbf{Z} (i.e. via the inclusion $\mathbf{Z} \hookrightarrow \mathbf{C}$).

Case of **R**: Weyl algebra = polynomial differential operators in one variable. It is generated by x, ∂_x . I.e. it is

$$\mathcal{D} = \mathbf{C}\langle x, \partial \rangle / (\partial x - x\partial = 1).$$

 \mathcal{D} acts on any function space closed under $x, \partial: C^{\infty}(\mathbf{R}), \mathcal{S}(\mathbf{R}), \mathcal{S}(\mathbf{R})^*$. Fourier transform gives an automorphism of \mathcal{D} :

$$L \cdot \hat{f} = \hat{L} \cdot \hat{f},$$

where $L \in \mathcal{D}$.

So,

$$x \mapsto i\partial$$
$$i\partial \mapsto -x$$

$$e^{isx} \in \mathcal{S}(\mathbf{R})^*$$

 $\mathcal{D} \cdot e^{isx} \subset \mathcal{S}(\mathbf{R})^*$

We get a module over \mathcal{D} . Actually, $\mathcal{D}e^{isx} \cong \mathcal{D}/\mathcal{D}(\partial - is) \cong \mathbf{C}[x]$ (the last isomorphism is as vector spaces).

Similarly, $\mathcal{D}\delta_s \cong \mathcal{D}/\mathcal{D}(x-s) \cong \mathbf{C}[\partial]$.

If M is a module for a ring \mathcal{D} , then an automorphism $\mathcal{D} \xrightarrow{()^h} \mathcal{D}$ induces a new module M^h : as a vector space, this is the same. $(L \cdot m)_{new} := L^h \cdot m$ for $L \in \mathcal{D}$.

$$M = \mathcal{D}/\mathcal{D}(\partial - is) \leftrightarrow M^h = \mathcal{D}/\mathcal{D}(x - s)$$
$$\mathcal{D} \cdot e^{ixs} \leftrightarrow \mathcal{D} \cdot \delta_s$$
$$\mathcal{S}(\mathbf{R})^* \xrightarrow{h} \mathcal{S}(\mathbf{R})^*$$

Analytic story. Let H be a Hilbert space and $T \in \text{End } H$. Suppose T is normal: $TT^* = T^*T$.

 $A_T \subset \operatorname{End} H$ smallest self-adjoint closed subalgebra. This is an analog of $\mathbf{C}[T]$.

$$\operatorname{Spec} T = \{ x \in \mathbf{C} : \lambda \operatorname{id} - T \not\in A_T^* \} \subset \mathbf{C}.$$

Theorem (Spectral theorem). $A_T \cong C(\operatorname{Spec} T)$.

Under this identification, T goes to the coordinate function x on \mathbf{C} . We smear H over Spec $T \subset \mathbf{C}$.

 λ -eigenspace: $H/\text{ideal}I_{\lambda} \subset A_T = C(\operatorname{Spec} T)$.

If A is now a commutative C^* -algebra (Banach algebra with a conjugate-linear involution). Can do the Gelfand transform:

$$A \to \hat{A} = \operatorname{Spec} A,$$

a Hausdorff topological space. These are closed maximal ideals or homomorphisms $A \to \mathbf{C}$.

Theorem (Gelfand). $A \stackrel{\sim}{\to} C(\hat{A})$.

Gelfand-Naimark theorem: the category of commutative C^* -algebras is equivalent to the category of locally-compact Hausdorff topological spaces.

Fourier transform: $\hat{G} = \operatorname{Spec}(C_c(G), \star)$. Then

$$(C_c(G), \star) \leftrightarrow (C_c(\hat{G}), \cdot)$$

So, representation theory of G is identified with the geometry of space $\hat{G}.$

Date: 02/07. Lie algebras vs Lie groups.

To a Lie group G we associate a Lie algebra $Lie(G) = \mathfrak{g} = T_1G$.

Lie is a functor Lie groups \to Lie algebras, i.e. T_1G has a canonical Lie algebra structure. If $\phi: G \to H$ a map of Lie groups, there is a map $\text{Lie}(\phi): \mathfrak{g} = T_1G \to \mathfrak{h} = T_1H$ of Lie algebras. Here $\text{Lie}(\phi) = d\phi|_1$.

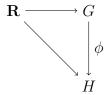
Theorem (Lie's theorem). Lie is an equivalence of categories:

$$\{1-connected\ Lie\ groups\} \xrightarrow{\sim} \{Lie\ algebras\}.$$

Here 1-connected means connected and simply-connected.

Basic ingredients. 1-parameter subgroups of G is a homomorphism $\psi: \mathbf{R} \to G$.

It is functorial:



Theorem. There is a bijection between 1-parameter subgroups and \mathfrak{g} .

For example, $G \subset GL_n\mathbf{R} \subset M_n\mathbf{R}$. Then $\mathfrak{g} = T_1G \subset T_1GL_n\mathbf{R} = M_n\mathbf{R}$, so Lie algebras of matrix groups are matrix algebras.

Then we have

$$\exp: M_n \mathbf{R} \to GL_n \mathbf{R}$$
$$A \mapsto e^A$$

We can also map

$$A \mapsto \{e^{tA}\}_{t \in \mathbf{R}},$$

which is a 1-parameter subgroup.

 $M_n\mathbf{R} \xrightarrow{\sim} GL_n\mathbf{R}$. Calculate differential, it is invertible, so exp is a diffeomorphism near 0.

Note, that $\exp(tA)$ is the unique solution of the ODE:

$$f'(t) = A \cdot f(t)$$
$$f(0) = id$$

for
$$f: \mathbf{R} \to M_n \mathbf{R}$$
.

One can obtain this from differentiating f(t+s) = f(t)f(s) at s = 0. Intrinsically,

$$T_1G \xrightarrow{\sim} \{left - invariant \ vector \ fields \ on \ G\}.$$

Left-invariant vector fields are vector fields ξ , such that for every $h \in G$ the derivative of the left translation by h preserves ξ :

$$\xi(hg) = d(h \cdot -) \cdot \xi(g).$$

If G is a Lie group, then the tangent bundle $TG \xrightarrow{\sim} G \times T_1G$.

So, for any $x \in \mathfrak{g}$ we have a left-invariant vector field l_x , get an ODE for $\psi : \mathbf{R} \to G$

$$d\psi|_{t \in \mathbf{R}}(1) = l_x(\psi(t))$$
$$\psi(0) = 1$$

There is a unique solution to this ODE.

Lie algebra structure on $T_1G = \mathfrak{g}$: by mapping $x \mapsto l_x$ we embedded $\mathfrak{g} \subset \operatorname{Vect}(G)$ (as vector spaces). This is in fact a Lie subalgebra by naturality: the bracket is coordinate-independent, so the left translation preserves the brackets.

$$\exp(tA)\exp(tB) = \exp\left(tA + tB + \frac{1}{2}t^2[A, B] + \dots\right).$$

Baker-Campbell-Hausdorff formula gives the rest of the Taylor series in terms of [,].

Alternatively, consider the group commutator $h^{-1}g^{-1}hg$. Then

$$\frac{1}{t}\frac{d}{dt}h_t^{-1}g_t^{-1}h_tg_t|_{t=0} = [A, B].$$

Examples of Lie algebras.

$$GL_n\mathbf{C} \stackrel{\text{det}}{\to} GL_1\mathbf{C} = \mathbf{C}^{\times}$$

 $\mathfrak{gl}_n\mathbf{C} \stackrel{\text{tr}}{\to} \mathfrak{gl}_1\mathbf{C} = \mathbf{C}.$

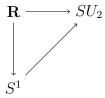
So, the Lie algebra of $SL_n\mathbf{C}$ is $\mathfrak{sl}_n\mathbf{C}$, the Lie algebra of traceless matrices.

If $K = e^{tA} \in O_n$, i.e. $KK^t = \text{id}$, then $A + A^t = 0$, so $\text{Lie}(O_n)$ consists of skew-symmetric matrices.

Let G be a 1-connected group. If we have a finite-dimensional representation of Lie(G), think of it as $\mathfrak{g} \to \mathfrak{gl}_n \mathbf{C}$, then we can associate a finite-dimensional representation of $G: G \to GL_n\mathbf{C}$ by Lie's theorem.

For example, $G = SL_2\mathbf{C}$ is topologically $S^3 \times \mathbf{R}^3$, $K = SU_2$ is topologically S^3 . So, both are 1-connected.

Any $g \in SU_2$ has an axis. g lives in a one-parameter subgroup:



So, $\exp : \mathfrak{su}_2 \to SU_2$ (this is true for any compact G).

 $SL_2\mathbf{R}$ is not simply-connected: it acts on \mathbf{H} by Mobius transformations, and the stabilizer of i is S^1 . So,

$$\mathbf{H} \cong SL_2\mathbf{R}/S^1$$
.

Weyl's unitary trick: finite-dimensional representations of $SL_2\mathbf{C}$, $SL_2\mathbf{R}$, SU_2 are all the same.

Given any real Lie algebra \mathfrak{g} , construct $\mathfrak{g}_{\mathbf{C}} = \mathfrak{g} \otimes_{\mathbf{R}} \mathbf{C}$, the bracket extends by \mathbf{C} -linearity.

Representation of \mathfrak{g} are maps $\mathfrak{g} \to \mathfrak{gl}_n \mathbf{C}$, but $\mathfrak{g} \subset \mathfrak{g}_{\mathbf{C}}$, so the representation uniquely extends.

$$\mathfrak{su}_2 \otimes \mathbf{C} = \mathfrak{sl}_2 \mathbf{C}$$
.

Last time: V irreducible finite-dimensional representation of $\mathfrak{sl}_2\mathbf{C} = \mathbf{C}\langle e, h, f \rangle$ is V_n for some positive integer n.

Corollary. Any finite-dimensional representation of $SL_2\mathbb{C}$ (or SU_2 , etc) is a direct sum of copies of V_n .

Date: 02/09.

Last time we classified all irreducible finite-dimensional representations of ${}_{2}\mathbf{C}$. They weights -n, -n+2, ..., n-2, n with respect to h. e and f move from one weight space to another.

If V, W are two reps of G, then $V \otimes W$ is also a rep of G:

$$g \cdot (v \otimes w) = gv \otimes gw.$$

Let $g = e^{tx}$, then differentiating we get

$$x \cdot (v \otimes w) = xv \otimes w + v \otimes x \cdot w.$$

 V^* is also a representation: require the pairing $V^* \times V \to \mathbf{C}$ to be invariant. Then

$$(g \cdot v^*)(v) = v^*(g^{-1}v).$$

For a Lie algebra,

$$x \cdot v^*(v) = v^*(-x \cdot v).$$

So, $V^{\otimes n}$ is also a representation of G. It is never irreducible: $V^{\otimes n} \supset \operatorname{Sym}^n V$.

Note, that S_n acts naturally on $V^{\otimes n}$. One also has an action of GL(V). These two actions commute, i.e. $GL(V) \times S_n$ also acts. For example, $\operatorname{Sym}^n V = (V^{\otimes n})^{S_n}$ (trivial S_n -isotypic piece). Since S_n is finite, we also have a map $V^{\otimes n} \to \operatorname{Sym}^n V$.

$$V^{\otimes n} \to \operatorname{Sym}^n V$$

$$W \mapsto \frac{1}{n!} \sum_{\sigma \in S_n} \sigma(w)$$

So, can think of $\operatorname{Sym}^n V$ as coinvariants.

For example, if $V = \operatorname{span}\{x, y\}$, then $\operatorname{Sym}^n V = \{\sum a_m x^m y^{n-m}\}$.

Since the GL(V) action commutes with the S_n action, GL(V) also acts on $\operatorname{Sym}^n V$. Similarly, GL(V) acts on $\wedge^n V$. Here $\wedge^n V$ is the sign-isotypic component of S_n .

Any irreducible representation W of S_n defines the Schur functor $V \to (V^{\otimes n})_W^{S_n}$.

Back to $SL_2\mathbf{C}$. We have the standard 2-dimensional representation $\mathbf{C}^2 = \operatorname{span} v_1, v_2.$ $hv_1 = v_1, hv_2 = -v_2.$ This is what we called V_1 .

 $SL_2\mathbf{C}$ acts on $\operatorname{Sym}^n\mathbf{C}^2$. It is spanned by

$$v_2^n \quad v_2^{n-1}v_1 \quad \dots \quad v_1^{n-1}v_2 \quad v_2^n$$

- $n - n + 2 \quad \dots \quad n - 2 \quad n$

So, we get V_n .

Now, consider $(\mathbf{C}^2)^*$, the dual representation. Denote the basis as x and y. Symⁿ $(\mathbf{C}^2)^{\times} = \text{span}\{x^n, x^{n-1}y, ..., y^n\}$, homogeneous polynomials of degree n on \mathbf{C}^2 .

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = -\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$= -\begin{pmatrix} a & b \end{pmatrix}$$
$$= -(ax + by)$$

Note, that $e \cdot y = 0$ and $e \cdot x = -y$, so $e = -y \frac{\partial}{\partial x}$. This gives $e \cdot x^m y^n = -m x^{m-1} y^{n+1}$.

Similarly, $f \cdot x = 0$ and $f \cdot y = -x$, so $f = -x \frac{\partial}{\partial y}$.

Finally, $h \cdot x = -x$, $h \cdot y = y$, so $h = y \frac{\partial}{\partial y} - x \frac{\partial}{\partial x}$.

These formulas can be obtained as follows: $SL_2\mathbf{C}$ acts on $\mathbf{C}^2\backslash 0$, which gives a map $\mathfrak{sl}_2\mathbf{C} \to \mathrm{Vect}(\mathbf{C}^2\backslash 0)$. For example,

$$\exp(te) = \begin{pmatrix} 1 & e^t \\ 0 & 1 \end{pmatrix},$$

so $x \mapsto x + e^{-t}y$. Taking a derivative at t = 0, one gets $ey = -y \frac{\partial}{\partial x}(x)$. Similarly,

$$\exp(th) = \left(\begin{array}{cc} e^t & 0\\ 0 & e^{-t} \end{array}\right).$$

Now, a geometric way. $SL_2\mathbf{C}$ acts on the manifold \mathbf{C}^2 . Then $SL_2\mathbf{C}$ acts on Fun(\mathbf{C}^2) for some class of functions. For example, consider polynomial functions $\mathbf{C}[x,y]$.

Get a decomposition

 $\mathbf{C}[x,y] = \bigoplus_n \text{homogeneous polynomials of degree } n = \bigoplus_n V_n$

all irreducible representations occur once.

To put it differently, besides $SL_2\mathbf{C}$ one also has a \mathbf{C}^{\times} -action on \mathbf{C}^2 . The decomposition of $\mathbf{C}[x,y]$ with respect to the \mathbf{C}^{\times} is the same:

$$\mathbf{C}[x,y] = \bigoplus_n \mathbf{C}[x,y]_n.$$

Note, that representations of S^1 are the same as *holomorphic* representations of \mathbb{C}^{\times} . For example, $z \mapsto z^p \overline{z}^q$ does not come from an S^1 representation.

Since $\mathbb{C}^2 \setminus 0$ is a homogeneous space for $SL_2\mathbb{C}$, we can identify $\mathbb{C}^2 \setminus 0 = SL_2\mathbb{C}/N$, where N consists of upper-triangular matrices in $SL_2\mathbb{C}$.

Polynomial functions on $\mathbb{C}^2 \setminus 0$ are the same as polynomial functions on \mathbb{C}^2 (an analog of Hartogs theorem): f(z,w)/g(z,w) has poles on a codimension 1 variety, while the origin has codimension 2.

 $SL_2\mathbf{C}$ has an action of $SL_2\mathbf{C}$ from both sides. If we mod out by N, we still have a left action of $SL_2\mathbf{C}$ on $SL_2\mathbf{C}/N$. From the right we still have an action of the normalizer of N is $SL_2\mathbf{C}$: this is precisely the Borel subgroup $B = \mathbf{C}^{\times} \ltimes \mathbf{C}$, where $\mathbf{C}^{\times} = H$ is the Cartan subgroup.

The map $\mathbb{C}^2 \setminus 0 \to \mathbb{CP}^1$ is just $SL_2\mathbb{C}/N \to SL_2\mathbb{C}/B$.

Let z = x/y a global coordinate on \mathbb{CP}^1 .

$$\frac{\partial}{\partial x} = \frac{\partial z}{\partial x} \frac{\partial}{\partial z} = \frac{1}{y} \frac{\partial}{\partial z}, \quad \frac{\partial}{\partial y} = \frac{\partial z}{\partial y} \frac{\partial}{\partial z} = -\frac{x}{y^2} \frac{\partial}{\partial z}.$$

So,

$$e \mapsto -\frac{\partial}{\partial z}$$
$$h \mapsto -2z \frac{\partial}{\partial z}$$
$$f \mapsto z^2 \frac{\partial}{\partial z}.$$

Problem: there are no holomorphic functions on \mathbb{CP}^1 . x, y are homogeneous coordinates on \mathbb{CP}^1 , so $\mathbb{C}[x, y]$ is the homogeneous coordinate ring of \mathbb{CP}^1 .

Given a point $l \in \mathbf{CP}^1$, i.e. a line $l \subset \mathbf{C}^2$. $x, y \in (\mathbf{C}^2)^* \to l^*$. So, $x|_l, y|_l \in l^*$. Taking a ratio, get a number (since l^* is a line).

Get a line bundle $\mathcal{O}(1)$ on \mathbb{CP}^1 . It is an assignment $l \in \mathbb{CP}^1 \mapsto$ line l^* . It is locally trivial:

$$\mathcal{O}(1)|_{\mathbf{CP}^1 \backslash \infty} \overset{/y}{\cong} (\mathbf{CP}^1 \backslash \infty) \times \mathbf{C}.$$

Similarly, $\mathcal{O}(1)|_{\mathbf{CP}^1\setminus 0} \cong (\mathbf{CP}^1\setminus 0) \times \mathbf{C}$.

On the overlap \mathbf{C}^{\times} , the two differ by $z \cdot = x/y \cdot .$

More line bundles: $l \in \mathbf{CP}^1 \mapsto (l^*)^{\otimes n} = \operatorname{Sym}^n l^*$. $\operatorname{Sym}^n((\mathbf{C}^2)^*)$ surjects onto $(l^*)^{\otimes n}$ by restriction. So, $\operatorname{Sym}^n l^*$ are homogeneous polynomials of degree n on l.

Theorem (Borel-Weil). Every irreducible representation of $SL_2\mathbf{C}$ (i.e. V_n) appears as holomorphic sections of a line bundle $(\mathcal{O}(n))$ on \mathbf{CP}^1 .

Recall from last time: we had the line bundles $\mathcal{O}(n)$, whose fiber at $l \in \mathbf{CP}^1$ is $(l^*)^{\otimes n}$. They are locally trivial: over $\mathbf{CP}^1 \setminus \infty$ and $\mathbf{CP}^1 \setminus 0$ can trivialize $\mathcal{O}(n) = \mathcal{O}(1)^{\otimes n}$ using homogeneous coordinates y and x: they are sections of $\mathcal{O}(1)$ away from ∞ and 0 respectively.

So, it makes sense to speak of C^{∞} , analytic or algebraic sections of $\mathcal{O}(n)$. These are the same as functions f_0 on $\mathbb{CP}^1 \setminus \mathbb{O}$ and f_{∞} on $\mathbb{CP}^1 \setminus \infty$, such that on \mathbb{C}^{\times} differ by $(z = x/y)^n$.

 $H^0(\mathbf{CP}^1, \mathcal{O}(n)) = \Gamma(\mathcal{O}(n))$, the space of holomorphic (the same as algebraic in this case) sections of $\mathcal{O}(n)$.

The functions f_{∞} are spanned by $1, z, z^2, z^3, \ldots$ The condition is that $f_0 = f_{\infty} \cdot z^n$ is holomorphic at ∞ . So, the only allowed powers are $1, z, \ldots, z^n$. In terms of homogeneous coordinates, these are $y^n, y^{n-1}x, \ldots, x^n$, i.e. exactly the homogeneous polynomials of degree n.

Theorem (Borel-Weil for \mathfrak{sl}_2). Every irreducible representation of $SL_2\mathbb{C}$ appears as $\Gamma(\mathcal{L})$, global holomorphic sections of a line bundle on \mathbb{CP}^1 (namely, $V_n \cong \Gamma(\mathcal{O}(n))$).

In fact, every holomorphic line bundle on \mathbb{CP}^1 is $\mathcal{O}(n)$ for some $n \in \mathbb{Z}$. Take any meromorphic section s of \mathcal{L} , then n =number of zeros of s - number of poles of s.

For any line bundle on \mathbb{CP}^1 has $\Gamma(\mathcal{L}) \cong$ an irrep of $SL_2\mathbb{C}$ and all irreps appear once (except for 0).

Meta theorem: representation theory of $SL_2\mathbf{C}$ is equivalent to the geometry of \mathbf{CP}^1 .

For every line bundle \mathcal{L} we have the space $H^0(\mathbf{CP}^1, \mathcal{L})$. We can also consider $H^1(\mathbf{CP}^1, \mathcal{L})$. This is the same as holomorphic sections of \mathcal{L} on \mathbf{C}^{\times} up to sections that extend to 0 and sections that extend to ∞ .

 $H^1(\mathbf{CP}^1, \mathcal{O}(n))$ contains ..., $z^{-n}, ..., z^{-1}, 1, z, z^2, ...$ Nonnegative powers $1, z, z^2...$ are holomorphic on $\mathbf{CP}^1 \setminus \infty$. z^k for $k \leq n$ also extends to ∞ (after multiplication by z^{-n}).

So, $H^1(\mathbf{CP}^1, \mathcal{O}(n)) = 0$ for $n \geq 0$. For negative degrees we have $H^1(\mathbf{CP}^1, \mathcal{O}(-n)) \cong V_{n-2}$, this is n-1 dimensional.

On any Riemann surface one has the canonical line bundle ω : sections are 1-forms. The sections are dz. In terms of w=1/z one has $dw=-1/z^2dz$. So, dz has a second-order pole at ∞ , i.e. $\omega=\mathcal{O}(-2)$.

Serre duality: one has an isomorphism

$$H^1(\mathbf{CP}^1, \mathcal{L}) \cong H^0(\mathbf{CP}^1, \mathcal{L}^* \otimes \omega)^*.$$

This is a version of the residue pairing: given a section $f \in \mathcal{L}(\mathbf{C}^{\times})$ and $g \in \mathcal{L}^* \otimes \omega(\mathbf{CP}^1)$ one has

$$\langle f, g \rangle \in \omega(\mathbf{C}^{\times}) \stackrel{\text{Res}}{\mapsto} \mathbf{C}.$$

So, $H^1(\mathbf{P}^1, \mathcal{O}(-n)) = H^0(\mathbf{P}^1, \mathcal{O}(n-2))^* = (V_{n-2})^* = V_{n-2}.$

Induced representations. Suppose G is a finite group and H is a subgroup. Then

$$\operatorname{Ind}_H^G : \operatorname{Rep} H \to \operatorname{Rep} Gw \qquad \qquad \mapsto v = \operatorname{Ind}_H^G W$$

As a vector space,

$$\operatorname{Ind}_H^G W \cong \bigoplus_{[g] \in G/H} [g]W.$$

The action of G is the natural one on the cosets.

Definition.

$$\operatorname{Ind}_{H}^{G} W = \operatorname{Map}_{H}(G, W)$$
$$= \{ f : G \to W | f(gh^{-1}) = h \cdot f(g) \}.$$

 $g \in G$ acts by left translation on G: $g \cdot f(g_1) = f(gg_1)$. Can reinterpret the definition in terms of the group algebra:

$$\operatorname{Map}(G, W) = \operatorname{Hom}_{\mathbf{C}}(\mathbf{C}G, W).$$

Note, that $\mathbb{C}G$ is a representation of H via the right action of H on G.

So, it makes sense ro write

$$\operatorname{Hom}_{H}(\mathbf{C}G, W),$$

maps of H-representations. Equivalently, this is $\operatorname{Hom}(\mathbf{C}G,W)^H$. This is a representation of G since G acts on $\mathbf{C}G$ on the left.

Let V be a representation of G. Then it is a representation of H, this is the restriction functor $\operatorname{Res}_G^H : \operatorname{Rep} G \to \operatorname{Rep} H$.

Theorem (Frobenius reciprocity). $\operatorname{Hom}_G(V,\operatorname{Ind}_H^GW)=\operatorname{Hom}_H(\operatorname{Res}_G^HV,W).$ Proof.

$$\operatorname{Hom}_{G}(V, \operatorname{Ind}_{H}^{G}W) = \operatorname{Hom}_{G}(V, \operatorname{Hom}_{H}(\mathbf{C}G, W))$$

$$\subset \operatorname{Hom}_{\mathbf{C}}(V, \operatorname{Hom}_{\mathbf{C}}(\mathbf{C}G, W))$$

$$= \operatorname{Hom}(V \otimes \mathbf{C}G, W)$$

$$= \operatorname{Hom}(\mathbf{C}G, \operatorname{Hom}(V, W))$$

We took the subspace of $G \times H$ -invariant morphisms. Then

$$\operatorname{Hom}_{G}(V, \operatorname{Hom}_{H}(\mathbf{C}G, W)) = \operatorname{Hom}_{\mathbf{C}}(\mathbf{C}G, \operatorname{Hom}_{\mathbf{C}}(V, W))^{G \times h}$$
$$= \operatorname{Hom}_{G}(\mathbf{C}G, \operatorname{Hom}_{H}(V, W))$$
$$= \operatorname{Hom}_{H}(V, W).$$

This is equivalent to saying that Ind is the right adjoint of the restriction functor.

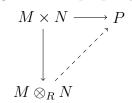
Let R be a ring (not necessarily commutative). Let M be a right R-module and N is a left R-module.

Then one has the tensor product:

$$M \otimes_R N = M \otimes N / \sim$$
,

where we identify $mr \otimes n \sim m \otimes rn$.

It satisfies the following universal property:



Claim: $\operatorname{Ind}_H^G W = \mathbf{C}G \otimes_{\mathbf{C}H} W = \bigoplus_{g \in G} g \cdot W / \sim$, where $(gh)w \sim g(hw)$.

Note, that $\mathbf{C}G$ is both functions and measures on G.

$$\operatorname{Hom}_{G}(\operatorname{Ind}_{H}^{G}W, V) = \operatorname{Hom}_{G}(\mathbf{C}G \otimes \mathbf{C}HW, V)$$

= $\operatorname{Hom}_{G}(\mathbf{C}G, \operatorname{Hom}_{H}(W, V))$
= $\operatorname{Hom}_{H}(W, V)$.

So, we also get

$$\operatorname{Hom}_G(\operatorname{Ind}_H^G W, V) = \operatorname{Hom}_H(W, \operatorname{Res}_G^H V).$$

Geometric interpretation. Construct a vector bundle $G \times_H W$ on G/H. One naturally has $G \to G/H$, a principal H-bundle.

Then $G \times_H W = G \times W / \sim$, where $(g, w) \sim (gh^{-1}, hw)$ for $h \in H$. So, get a copy of W for every coset.

Suppose G acts on X and $W \to X$ a vector bundle.

Definition. W is said to be an G-equivariant vector bundle, if for any $g \in G, x \in X$ we are given $\phi_g : W|_{g \cdot x} \stackrel{\sim}{\to} W|_x$.

Another way to say that: $\phi_g: g^*\mathcal{W} \xrightarrow{\sim} \mathcal{W}$. We also require associativity: $\phi_{gh} = \phi_h \phi_g: \mathcal{W}|_{ghx} \to \mathcal{W}|_x$. Sections of \mathcal{W} are assignments $x \mapsto f(x) \in \mathcal{W}|_x$. Then the space of sections $\Gamma(\mathcal{W})$ is a representation of G:

$$(g \cdot f)(x) = \phi_g(f(gx)).$$

 $\mathcal{W} = G \times_h W$ is G-equivariant: for $k \in G$

$$k \cdot (g \times w) = kg \times w \cong kgh^{-1} \times hw.$$

Finally,
$$\Gamma(G \times_H W) = \operatorname{Map}_H(G, W) = \operatorname{Ind}_H^G W$$
.

Date: 02/16

Let $G \supset H$ be Lie groups. Then G/H is a manifold and $G \times_H W$ is an equivariant vector bundle.

Lie $G = \mathfrak{g} = \mathfrak{s} \oplus \mathfrak{h}$ as vector spaces, where $\mathfrak{h} = \text{Lie } H$.

An open neighborhood of the identity in G looks like open neighborhoods of 0 in vector spaces $\mathfrak{s}, \mathfrak{h}$ using the exponential map. That is,

$$G \supset U \ni q = s \cdot h$$

with $s \in \exp(\mathfrak{s})$ and $h \in \exp(\mathfrak{h})$.

Open neighborhood of $[1] \in G/H$ is diffeomorphic to an open neighborhood of $0 \in \mathfrak{s}$.

We are getting a splitting of $G \to G/H$ near the identity.

For finite groups we had $\operatorname{Ind}_H^G = \operatorname{sections}$ of the G-equivariant vector bundle $G \times_H W$. Need to put some adjective for sections: $C^{\infty}, C_c^{\infty}, C, C_c, L^2$, analytic, algebraic. Get different kinds of inductions: smooth induction, compact induction, unitary induction, holomorphic induction etc.

Consider $G = SL_2\mathbf{C}$ and

$$H = B = \begin{pmatrix} \star & \star \\ 0 & \star \end{pmatrix} \cong \mathbf{C}^{\times} \ltimes \mathbf{C}.$$

Let's induce 1-dimensional representations of B to G.

Remark: any algebraic irrep of B is 1-dimensional. The reason being that the algebraic representations of $N=\mathbb{C}$ are trivial: $\exp(itx)$ is not algebraic unless t=0. Then we know that the only irreps of \mathbb{C}^{\times} are 1-dimensional.

So, only need a representation of H, i.e. consider $\{C_n\}_{n\in\mathbf{Z}}$.

Then $\operatorname{Ind}_B^G \mathbf{C}_n$ are sections of the line bundle $SL_2\mathbf{C} \times_B \mathbf{C}_n$. This is the same as $SL_2\mathbf{C}/N \times_H \mathbf{C}_n = (\mathbf{C}^2 \setminus 0) \times_{\mathbf{C}^{\times}} \mathbf{C}_n = \mathcal{O}(-n)$.

Using holomorphic induction, we get $\operatorname{Ind}_B^G \mathbf{C}_n \cong V_{-n}$ for $n \leq 0$ and 0 otherwise.

The same works for $SL_n\mathbf{C}$: any irreducible finite-dimensional representation of $SL_n\mathbf{C}$ is a holomorphic induction of a 1-dimensional

representations of

$$B = \begin{pmatrix} \star & \dots & \star \\ & \dots & \star \\ 0 & & \dots \end{pmatrix}.$$

This is the same as holomorphic sections of a line bundle on G/B, the flat variety.

Reverse engineering Borel-Weil.

V is an irrep of $SL_2\mathbf{C}$, $\mathbf{P}(V) \cong \mathbf{CP}^n$. There is a line bundle $\mathcal{O}(1)$ on $\mathbf{P}(V)$ (the dual of the tautological line bundle). Then $\Gamma(\mathcal{O}(1)) = V^*$.

Suppose we have $v \in V$ the higher weight vector, i.e. $x \cdot v = 0$ and $h \cdot v = \lambda v$. Then $N \cdot v = v$ and $H \cdot \mathbf{C}v = \mathbf{C}v$. Then B[v] = [v], where $[v] = \mathbf{C}v \in \mathbf{P}(V)$. Note, that λ has to be integral since we have an action of the group H.

Consider

$$SL_2\mathbf{C} \to \mathbf{P}(V)$$

 $g \mapsto g[v]$

It factors through B:

$$\mathbf{CP}^1 = SL_2\mathbf{C}/B \hookrightarrow \mathbf{P}(V).$$

Since \mathbf{CP}^1 does not have nontrivial covers, $\mathbf{CP}^1 \cong \mathbf{O}_{[v]} \subset \mathbf{P}(V)$.

Now assume V is irreducible. Then $\mathbf{O}_{[v]}$ is not contained in any hyperplane, i.e. $\mathbf{P}(W) \subset \mathbf{P}(V)$.

One finds that $\mathbf{CP}^1 \hookrightarrow \mathbf{CP}^n$ has degree n. Then

$$V^* = \Gamma(\mathbf{CP}^1, \mathcal{O}(1)) \to \Gamma(\mathbf{CP}^1, \mathcal{O}_{\mathbf{P}^n}(1)|_{\mathbf{P}^1}).$$

Since it is not contained in any hyperplane, this map is injective. It turns out that it is also surjective. Since \mathbf{P}^1 has degree n, $\mathcal{O}_{\mathbf{P}^n}(1)|_{\mathbf{P}^1} = \mathcal{O}(n)$.

One has a natural map $\mathbf{P}^1 \hookrightarrow \mathbf{P}^n$, the Veronese map. More generally, one has

$$\mathbf{P}(W) \to \mathbf{P}(\operatorname{Sym}^n W)$$

 $[w] \mapsto [w^n]$

For the Veronese map you map $[x,y] \to [x^n,x^{n-1}y,...,y^n]$, precisely the basis we found previously.

Decomposing representations. Suppose we have $V_5 = \operatorname{Sym}^5 \mathbf{C}^2$ and $V_3 = \operatorname{Sym}^3 \mathbf{C}^2$. What is the tensor product $V_5 \otimes V_3$.

From the picture, we see that

$$V_5 \otimes V_3 = V_8 \oplus V_6 \oplus V_4 \oplus V_2$$
.

One certainly has $V_5 \otimes V_3 \to V_8$, which reflects the fact that Sym[•] is a ring: Symⁿ \otimes Sym^m \to Sym^{n+m}.

Universal enveloping algebra. $G: \mathbf{C}G$ is the same as $\mathfrak{g}: U\mathfrak{g}$.

Representations of G are the same as representations for $\mathbb{C}G$.

Want the same: Lie algebra representations of \mathfrak{g} are the same as representations of the associative algebra $U\mathfrak{g}$.

$$\operatorname{Hom}_{\operatorname{Lie}}(\mathfrak{g},\mathfrak{gl}(V)) = \operatorname{Hom}_{\operatorname{Assoc}}(U\mathfrak{g},\operatorname{End}(V)).$$

Recall, if A is any associative algebra, then can construct the Lie algebra A^{Lie} with the bracket [a,b]=ab-ba. Get a functor

$$\text{Lie}: Assoc \rightarrow \text{Lie}$$
.

We are asking for

$$\operatorname{Hom}_{\operatorname{Lie}}(\mathfrak{g}, A^{\operatorname{Lie}}) = \operatorname{Hom}_{\operatorname{Assoc}}(U\mathfrak{g}, A).$$

That means that U is the left adjoint to the functor Lie.

Given any vector space V, can construct the tensor algebra $TV = \bigoplus_n V^{\otimes n}$, which is an associative algebra. It satisfies the following universal property:

$$\operatorname{Hom}_{\operatorname{Vect}}(V, Forget(A)) = \operatorname{Hom}_{Assoc}(TV, A).$$

Suppose we have a representation $\mathfrak{g} \stackrel{\phi}{\to} \operatorname{End}(V)$. This is a map of vector spaces, so get a map $T^{\bullet}\mathfrak{g} \to \operatorname{End}(V)$. But, $\phi([x,y]) = \phi(x)\phi(y) - \phi(y)\phi(x)$. Therefore, the map $T^{\bullet}\mathfrak{g} \to \operatorname{End}(V)$ factors through $U\mathfrak{g} \to \operatorname{End}(V)$, where

$$U\mathfrak{g}=T^{\bullet}\mathfrak{g}/\sim,$$

where we identify $\mathfrak{g}^{\otimes 2} \ni x \otimes y - y \otimes x \sim [x, y] \in \mathfrak{g}^{\otimes 1}$.

For example, if $\mathfrak g$ is abelian, $U\mathfrak g=\operatorname{Sym}\mathfrak g$. In general, get a deformation of $\operatorname{Sym}\mathfrak g$.

Question: how big is $U\mathfrak{g}$? Looks like Sym \mathfrak{g} .

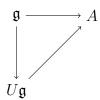
Theorem (Poincare-Birkhoff-Witt). There is an identification $U\mathfrak{g} \xrightarrow{\sim} \operatorname{Sym} \mathfrak{g}$ as vector spaces once we have an ordered basis of \mathfrak{g} .

For example, in degree 2 we have the basis e^2 , eh, ef, h^2 , hf, f^2 . But, for example, fe = ef - h.

We have a map $\operatorname{Sym}^n \mathfrak{g} \hookrightarrow U\mathfrak{g}$ given by taking an element of $\operatorname{Sym}^n \mathfrak{g}$ and writing it in the lexicographic order.

Date: 02/21

Last time: universal enveloping algebra is defined by the following universal property:



PBW theorem: pick an ordered basis x, y, z... of \mathfrak{g} , then we get a basis of $U\mathfrak{g}$ consisting of lexicographically ordered monomials $x^ly^mz^n...$

I.e. as a vector space $U\mathfrak{g} \xrightarrow{\sim} \operatorname{Sym} \mathfrak{g}$. If \mathfrak{g} is abelian, then $U\mathfrak{g} \cong \operatorname{Sym} \mathfrak{g}$ as algebras.

Deformation $U_{\hbar}\mathfrak{g}$ for $\hbar \in \mathbb{C}$:

$$U_{\hbar}\mathfrak{g}=T^{*}\mathfrak{g}/\sim,$$

where $x \times y - y \otimes x \sim \hbar[x, y]$. This is a family of algebras over the complex plane.

So, for $\hbar=1$ we get $U\mathfrak{g}$; for $\hbar=0$ we get $\mathrm{Sym}\,\mathfrak{g}$. The PBW theorem also works with \hbar . One can see that

$$U_{\hbar}\mathfrak{g}\cong U\mathfrak{g}$$

as algebras for any $\hbar \cong 0$. Indeed, for any $x \in \mathfrak{g}$ define $\tilde{x} = x/\hbar$. Then

$$[\tilde{x}, \tilde{y}] = [x/\hbar, y/\hbar] = \frac{1}{\hbar^2} [x, y] = \frac{1}{\hbar} \widetilde{[x, y]}.$$

 $U\mathfrak{g}$ is a filtered associative algebra:

$$U\mathfrak{g} = \cup_{n \in \mathbf{Z}} U\mathfrak{g}_{\leq n},$$

where $U\mathfrak{g}_{\leq n}$ consists of sums of monomials of degree $\leq n$. The filtration comes from the natural filtration on $T\mathfrak{g}$, which descends to $U\mathfrak{g}$.

Filtered algebra means that

$$U\mathfrak{g}_{\leq n}\cdot U\mathfrak{g}_{\leq m}\to U\mathfrak{g}_{\leq n+m}.$$

If you have a filtered algebra, one can construct the associated graded algebra:

$$\operatorname{gr} U\mathfrak{g} = \bigoplus_n U\mathfrak{g}_{\leq n}/U\mathfrak{g}_{\leq n-1} \stackrel{\sim}{\to} \operatorname{Sym} \mathfrak{g}.$$

Picture of $U\mathfrak{sl}_2$:

What is this as a representation of \mathfrak{g} ? \mathfrak{g} acts on $U\mathfrak{g}$ by $x \circ u = xu - ux$ for $x \in \mathfrak{g}$ and $u \in U\mathfrak{g}$.

It is easy to see that $\operatorname{Sym}^2 \mathfrak{g} \cong V_4 \oplus V_0$. So, $(\operatorname{Sym}^2 \mathfrak{g})^{\mathfrak{g}} \cong \mathbb{C}$.

Claim: in $U\mathfrak{g}_{\leq 2}$ there is a 1-dimensional space of \mathfrak{g} -invariants (other than $\mathbf{C} \cdot 1$). This is the quadratic Casimir:

$$C = ef + fe + \frac{1}{2}h^2$$

$$2ef - h + \frac{1}{2}h^2$$

 $(U\mathfrak{g})^{\mathfrak{g}}$ consists of expressions $z \in U\mathfrak{g}$, such that $zx = xz \quad \forall x \in \mathfrak{g}$. But then it coincides with the center $Z\mathfrak{g}$ of $U\mathfrak{g}$.

$$Ce = efe + fee + \frac{1}{2}h^{2}e$$

$$= (eef - eh) + (efe - he) + \frac{1}{2}(heh - he)$$

$$= eef + efe - eh + \frac{1}{2}(eh^{2} + eh)$$

$$= eef + efe + \frac{1}{2}eh^{2} = eC.$$

The same calculation works for f and h.

 $(\operatorname{Sym}^2 \mathfrak{g})^{\mathfrak{g}}$ consists of invariant bilinear forms on \mathfrak{g} :

$$\langle [x, u], v \rangle + \langle u, [x, v] \rangle = 0.$$

 $\mathfrak g$ is irreducible as a $\mathfrak g$ -rep (i.e. $\mathfrak g$ is simple), then there is a unique (up to a scalar) invariant nondegenerate form.

Uniqueness:

$$\langle, \rangle : \mathfrak{g} \stackrel{\sim}{ o} \mathfrak{g}^*$$

as \mathfrak{g} -representations. \mathfrak{g}^* is irreducible, so this map is unique up to a scalar by Schur's lemma.

This form is easy to write for \mathfrak{sl}_2 : for $x, y \in \mathfrak{sl}_2$ we have $\langle x, y \rangle = \operatorname{tr}(xy)$.

For example,

$$\langle e, f \rangle = 1, \quad \langle h, h \rangle = 2$$

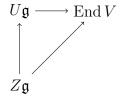
and the other combinations are 0.

One can write $C \in U\mathfrak{g}_{\leq 2}$ (\mathfrak{g} as above) as

$$C = \sum_{i} e_i e^i,$$

where e_i is a basis of \mathfrak{g} and e^i is the dual basis.

If V is any representation of \mathfrak{g} , we have



So, we get a map $Z\mathfrak{g} \to \operatorname{End}_{\mathfrak{g}} V$, but for V irreducible Schur's lemma implies that $\operatorname{End} \mathfrak{g} V = \mathbf{C} \cdot \operatorname{id}$. So, we get a homomorphism

$$\chi_V: Z\mathfrak{g} \to \mathbf{C},$$

it is called the infinitesimal character.

For any $z \in Z\mathfrak{g}$ we have

$$z \cdot v = \chi(z) \cdot v \quad \forall v \in V.$$

E.g. for $V = V_n$: $e \cdot v_n = 0, h \cdot v_n = nv_n$ for a highest-weight vector $v_n \in V_n$. Then

$$C \cdot v_n = efv_n + fev_n + \frac{1}{2}h^2v_n$$
$$= nv_n + \frac{1}{2}n^2v_n = n(n/2 + 1)v_n = \left(\frac{1}{2}(n+1)^2 - \frac{1}{2}\right)v_n.$$

So, C acts on V_n as $\frac{1}{2}(n+1)^2 - \frac{1}{2}$.

For V any finite-dimensional representation of \mathfrak{sl}_2 ,

$$V = \oplus V_n^{\oplus \mu_n},$$

but now each term $V_n^{\oplus \mu_n}$ is a C-eigenspace with an eigenvalue $\frac{1}{2}(n+1)^2 - \frac{1}{2}$.

Q: is there anything else in the center $Z\mathfrak{g}$?

Harish-Chandra isomorphism: $Z_2 = \mathbf{C}[\mathbf{C}]$.

Indeed, as a \mathfrak{g} -representation, $U\mathfrak{g}$ is just Sym \mathfrak{g} . Need to calculate $(\operatorname{Sym}^n\mathfrak{g})^{\mathfrak{g}}$. Claim: it is \mathbf{C} for even n and 0 for odd n.

One can just count 0 and 2 weight spaces in $\operatorname{Sym}^n \mathfrak{g}$, the difference is either 1 or 0.

In general,

Theorem (Harish-Chandra isomorphism). $Z\mathfrak{g} \cong \mathbf{C}[\mathfrak{h}^*]^W$.

Here \mathfrak{h}^* consists of all possible h-eigenvalues. For \mathfrak{sl}_2 $W=\mathbf{Z}/2$. It acts by reflection in $\lambda=-1\in\mathfrak{h}^*$. I.e. it take λ to $-\lambda-2$. Then

$$\mathbf{C}[\mathfrak{h}^*] = \mathbf{C}[C]$$

since

$$C = \frac{1}{2}((\lambda + 1)^2 - 1)$$

gives a coordinate on the λ -plane after modding out by the $\mathbb{Z}/2$ -action.

We saw that shift last week: $\lambda \mapsto -\lambda - 2$ is similar to the Serre duality on \mathbb{CP}^1 : $\mathcal{O}(n) \mapsto \mathcal{O}(-n-2)$.

Classical analog of the Harish-Chandra isomorphism (for $\hbar = 0$), i.e. what is $(\operatorname{Sym} \mathfrak{g})^{\mathfrak{g}}$. This is the same as $(\operatorname{Sym} \mathfrak{g})^G$.

Observe, that $\operatorname{Sym} \mathfrak{g} = \mathbf{C}[\mathfrak{g}^*]$. One can identify $\mathfrak{g} \cong \mathfrak{g}^*$.

For a matrix we can associate the coefficients of the characteristic polynomial as GL_n -invariants. For SL_2 we only have the determinant: this is the classical version of the Casimir.

More generally, $\mathbf{C}[\mathfrak{gl}_n]^{GL_n} \cong \mathbf{C}[\mathfrak{h}]^{W=S_n}$. Here \mathfrak{h} consists of diagonal matrices.

By conjugating one can transform

$$\left(\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array}\right) \mapsto \left(\begin{array}{cc} \lambda & \epsilon \\ 0 & \lambda \end{array}\right)$$

for any nonzero ϵ .

Date: 02/23

Harmonic analysis and the Casimir. Observe, that the Casimir $C(V_n) = \frac{1}{2}((n+1)^2 - 1)$ distinguishes irreps.

So, if V is any finite-dimensional representation, we can decompose

$$V = \bigoplus_{\lambda \in \mathbf{C}} V_{\lambda}$$

into C-eigenspaces. $V_{\lambda}=0$ unless $\lambda=\frac{1}{2}((n+1)^2-1)$ in which case $V_{\lambda}=V_n^{\oplus \cdots}$.

Side note: let V(t) be any finite-dimensional representation of $SL_2\mathbf{C}$ depending continuously on a parameter t. So, we get that any such family V(t) is constant (up to an iso) as a representation.

Recall, that \mathfrak{g} consists of left-invariant vector fields on G. These come from differentiating the *right* action of G on G.

Any $\alpha \in \text{Diff}(G)^{G_l}$ is actually in G_r . Indeed, the map is given by

$$\alpha \mapsto \alpha(1) \in G$$
.

For any $h \in G$ we have

$$\alpha(h) = \alpha(h \cdot 1) = h\alpha(1) = hg.$$

Now, $U\mathfrak{g}$ is the algebra generated by \mathfrak{g} subject to the commutation relations. This is exactly left-invariant differential operators on G.

The center $Z\mathfrak{g}$ is invariant under left translations and commutes with \mathfrak{g} , which is generated by right translations, i.e. also right-invariant.

Proposition. $Z\mathfrak{g}$ consists of $\mathcal{D}(G)^{G_l \times G_r}$, bi-invariant differential operators.

E.g. if G is abelian (for example, \mathbb{R}^n/Λ). Then left-invariant = right-invariant = constant coefficient operators.

Casimir: if G is a Lie group with an invariant nondegenerate form on \mathfrak{g} , we defined $C \in Z\mathfrak{g}$ by $C = \sum e_i e^i$. So, we have a canonical biinvariant of order 2 on G: the Laplacian Δ .

If we look at any homogeneous space G/H, then $C = \Delta$ descends to a G-invariant second order differential operator on G/H. C preserves $C^{\infty}(G/H) = C^{\infty}(G)^H \subset C^{\infty}(G)$.

Take

$$C^{\infty}(G/H) \supset C_{fin}(G/H) = \bigoplus_{\lambda \in \mathbf{C}} \{ f : Cf = \lambda f \}.$$

Decomposing $C_{fin}(G/H)$ as a representation of G is the same as eigenspace decomposition.

Basic problem: understand functions on G itself. We will look at $\mathbb{C}[G]$, polynomial functions.

We will consider

$$SL_2\mathbf{C} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \quad ad - bc = 1 \right\} \subset \operatorname{Mat}_{2 \times 2} = \operatorname{End}(\mathbf{C}^2) = \mathbf{C}^2 \otimes (\mathbf{C}^2)^*.$$

Have two $SL_2\mathbf{C}$ actions on both \mathbf{C}^2 factors, these are left and right translations. So,

$$\mathbf{C}[SL_2\mathbf{C}] = \mathbf{C}[a, b, c, d]/(ad - bc = 1)$$
$$= \bigoplus_n \operatorname{Sym}^n(\mathbf{C}^2 \otimes (\mathbf{C}^2)^*)/(ad - bc = 1).$$

Can decompose it into irreps using the Peter-Weyl theorem.

Theorem (Peter-Weyl). $\mathbf{C}[SL_2\mathbf{C}] \cong \bigoplus_{n \in \mathbf{Z}_+} V_n \otimes V_n^*$ as a representation of $SL_2\mathbf{C} \times SL_2\mathbf{C}$.

Works more generally for reductive groups G: complexification of K compact Lie group.

We can write

$$\mathbf{C}[G] \cong L^2(K)_{fin} = \{f : k - \text{span of } f \text{ is finite-dimensional}\}.$$

For example,
$$K = S^1$$
, then $L^2(S^1) \supset \mathbf{C}[e^{2\pi it}, e^{-2\pi it}]$.

Proof. Matrix elements: let V be a rep of G. Then we have a canonical map

$$V \otimes V^* \to \mathbf{C}[G]$$
$$v \otimes v^* \mapsto f_{v,v^*}(q) = \langle v^*, q \cdot v \rangle.$$

This is a map of $G \times G$ -representations:

$$(h_1 \times h_2) f_{v,v^*}(g) = \langle v^*, h_1^{-1} g h_2 \cdot v \rangle$$

= $\langle h_1 \cdot v^*, g \cdot (h_2 \cdot v) \rangle$
= $f_{h_2v,h_1v^*}(g)$.

If V is irreducible, then $V \otimes V^*$ is irreducible as a representation of $G \times G$. Can check

$$\operatorname{End}_{G\times G}(V\otimes V^*)=\operatorname{End}_GV\otimes\operatorname{End}_GV^*.$$

Then for an irrep V we have $V \otimes V^* \hookrightarrow \mathbf{C}[G]$.

Claim: this $V \otimes V^*$ is the entire V-isotypic component of $\mathbf{C}[G]$ as left G-representations.

$$\mathbf{C}[G] = \bigoplus_{V \text{ irrep}} V \otimes \operatorname{Hom}(V, \mathbf{C}[G]).$$

We want to make sure $\text{Hom}(V, \mathbf{C}[G]) = V^*$.

Cheap argument for $SL_2\mathbf{C}$: V_n -isotypic component is precisely the $\frac{1}{2}((n+1)^2-1)$ eigenspace for C, which is the same for left and right \tilde{G} -actions. These chunks are preserved by

$$G \to G$$

 $q \mapsto q^{-1}$.

So, we know that $V^* \subset \text{Hom}(V, \mathbb{C}[G])$, but using this symmetry we conclude that $V^* = \text{Hom}(V, \mathbf{C}[G])$.

Argument for a finite G: we have a map

$$\mathbf{C}[G] \stackrel{\mathrm{tr}}{\to} \mathbf{C}$$
 $f \mapsto f(1)$

It gives a nondegenerate inner product $\langle f, g \rangle = \operatorname{tr}(f * g)$. $f_{v,v^*}(1) = \langle v^*, v \rangle$, i.e. on $V \otimes V^* \hookrightarrow \mathbf{C}[G]$ the trace is just the pairing $V\otimes V^*\to {f C}.$

Third argument: $\bigoplus_{V \text{ irrep}} V \otimes V^* \hookrightarrow \mathbf{C}[G] \ni f$, which actually lies in a finite-dimensional G-invariant subspace W. Let $W = \text{span}\{f_1, ..., f_n\}$. Then

$$g \cdot f_i = \sum M_{ij}(g) \cdot f_j.$$

$$f_i(g) = (g^{-1}f_i)(1)$$

= $\sum M_{ij}(g^{-1})f_j(1),$

i.e. f_i is a linear combination of $M_{ij}(g^{-1})$, matrix elements for the dual representation W^* . One can check that

$$f_{V,v,v^*} + f_{W,w,w^*} = f_{V \oplus W,v \oplus w,v^* \oplus w^*}.$$

The same works for tensor products:

$$f_{V,v,v^*} \cdot f_{W,w,w^*} = f_{V \otimes W,v \otimes w,v^* \otimes w^*}.$$

This gives a multiplication on C[G], not the convolution.

We have

$$\mathbf{C}[G/H] = \mathbf{C}[G]^{H}$$

$$= (\bigoplus_{V} V \otimes V^{*})^{H}$$

$$= \bigoplus_{V} V \otimes (V^{*})^{H}$$

Let's look at $\mathbf{C}[x,y] = \mathbf{C}[G/N]$. Then

$$\mathbf{C}[G/N] = \bigoplus_{n \in \mathbf{Z}_+} V_n \otimes (V_n)^N = \bigoplus_{n \in \mathbf{Z}_+} V_n,$$

since ${\cal V}_n^N$ is just the space of highest-weight vectors, which is 1-dimensional in our case.

Another example:

$$\mathbf{C}[G/H] = \bigoplus_{n \in \mathbf{Z}_+} V_n \otimes (V_n)^{C^{\times}} = \bigoplus n \in \mathbf{Z}_+ V_{2n},$$

since $(V_n)^{\mathbf{C}^{\times}}$ is zero-dimensional for even-dimensional representations and 1-dimensional for odd-dimensional representations.

Consider the compact version of the above: $SU_2/T = S^2$.

$$\mathbf{C}[S^2] = \oplus V_n \otimes (V_n)^T = \oplus_l V_{2l}.$$

Last time we talked about the Peter-Weyl theorem (for $G = SL_2\mathbf{C}$):

$$\mathbf{C}[G] = \bigoplus_{V \text{ irrep}} V \otimes V^* = \bigoplus_{n \geq 0} V_n \otimes V_n.$$

For $G = SU_2$ one has

$$L^2(G) = \bigoplus_{V \text{ irrep}} \widehat{V} \otimes V^*.$$

Main example: $S^2 = SU_2/T$. One can think of $T = H \cap SU_2$. Alternatively, $S^2 = SO_3/SO_2$.

Therefore,

$$L^2(S^2) = \bigoplus_{n>0} \widehat{(V_n \otimes V_n)^T} = \widehat{\bigoplus_{l>0} V_{2l}}.$$

Instead of dealing with L^2 functions, one can study polynomials, then

$$\mathbf{C}[S^2] = \bigoplus_{l>0} V_{2l}.$$

Here $S^2 = \{x^2 + y^2 + z^2 = 1\} \subset \mathbf{R}^3$ is an algebraic variety. Then $\mathbf{R}[S^2]$ are real algebraic functions on \mathbf{R}^3 , restricted to S^2 . Then $\mathbf{C}[S^2] = \mathbf{R}[S^2] \otimes \mathbf{C}$.

 $C = ef + fe + \frac{1}{2}h^2 \in U\mathfrak{sl}_2$. Want to write it in the \mathfrak{su}_2 coordinates:

$$\mathbf{i} = \begin{pmatrix} i \\ -i \end{pmatrix}, \quad \mathbf{j} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \mathbf{k} = \begin{pmatrix} i \\ -i \end{pmatrix}.$$

Then

$$h = -i\mathbf{i}, \quad e = \frac{1}{2}(\mathbf{j} - i\mathbf{k}), \quad f = -\frac{1}{2}(\mathbf{j} + i\mathbf{k}).$$

Then

$$C = -\frac{1}{2}(\mathbf{i}^2 + \mathbf{j}^2 + \mathbf{k}^2).$$

 SU_2 acts on S^2 , so $\mathfrak{su}_2 \to \operatorname{Vect} S^2$ and therefore $U\mathfrak{su}_2 \to \operatorname{Diff}(S^2)$. We get a map $Z\mathfrak{su}_2 \to \operatorname{invariant} \operatorname{Diff}(S^2)$. The only such operator (up to a scalar) is

$$C = \frac{1}{2} \Delta_{S^2}.$$

We have $C^{\infty}(S^2) \supset H = \bigoplus_{\lambda \in \mathbf{C}} \{f : \Delta_{S^2} f = \lambda f\}$. One can write

$$H = \bigoplus_{l \ge 0} H_l = \{ f : \Delta_{S^2} f = l(l+1)f \},$$

here $l(l+1) = \frac{1}{4}((n+1)^2 - 1)$ and n = 2l.

$$H_l = \bigoplus_{m=-l}^{l} (H_l^m = \{ \mathbf{i}f = imf \}).$$

The vector field corresponding to $\mathbf{i} \in \mathfrak{su}_2$ is $y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} = \frac{\partial}{\partial \phi}$.

To prove that the irreps have multiplicity one in the decomposition, we can equivalently prove that $H_l^0 \subset H_l$ is one-dimensional. That means that we are looking for rotationally-symmetric f, such that

$$(\Delta - l(l+1))f = 0.$$

Separation of variables for $\Delta_{\mathbf{R}^3}$: take $f \in C^{\infty}(S^2)$, which is an eigenfunction for Δ_{S^2} , it extends uniquely to $\mathbf{R}^3 \setminus 0 \cong S^2 \times \mathbf{R}_+$ as a harmonic function $\Delta_{\mathbf{R}^3} \tilde{f} = 0$.

In fact, we have $\mathbf{C}[x,y,z] \cong \mathbf{C}[r^2] \otimes H$, where H consists of harmonic polynomials $f \in \mathbf{C}[x,y,z]$. When we restrict to the 2-sphere, we get $\mathbf{C}[S^2] \cong H$.

Algebraic version: $\mathbf{C}[\mathbf{C}^3] = \mathbf{C}[\mathfrak{g}^*]$ as a representation of $SL_2\mathbf{C}$. But one has

$$\mathbf{C}[\mathfrak{g}^*] = \operatorname{Sym} \mathfrak{g} = \bigoplus_k \operatorname{Sym}^k(V_2).$$

Recall the Chevalley theorem: $\mathbf{C}[\mathfrak{g}]^G \stackrel{\sim}{\to} \mathbf{C}[\mathfrak{h}]^W$.

That means, the conjugation-invariant function of a matrix is determined by its values on the diagonal.

For $SL_2\mathbf{C}$ we have

$$\mathbf{C}[\mathfrak{sl}_2\mathbf{C}]^{SL_2\mathbf{C}} = \mathbf{C}[a^2 + bc].$$

There are infinitely many trivial subrepresentations: $\mathbf{C}[\mathfrak{g}] \supset \mathbf{C}[\mathfrak{g}]^G$. Geometrically, we have a map $\mathfrak{g} \to \operatorname{Spec} \mathbf{C}[\mathfrak{g}]^G = \mathfrak{g}//G \cong \mathfrak{h}/W$. Over $0 \in \mathfrak{h}/W$ we have the nilpotent cone

$$\mathcal{N} = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a^2 + bc = 0 \right\}.$$

It is \mathbb{C}^{\times} -invariant, so is called a cone. Any nonzero matrix is conjugate to

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$$
.

So, there are two $SL_2\mathbf{C}$ -orbits: the trivial orbit (zero matrix) and an open orbit.

For any other point in \mathfrak{h}/W , we get a smooth quadric.

The real slice $\mathfrak{so}_3 \subset \mathfrak{sl}_2$ intersects the nilpotent cone only at zero. We get the standard picture with concentric spheres.

What is $\mathbb{C}[\mathcal{N}]$? One can write

$$\mathcal{N} = SL_2\mathbf{C} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \sqcup \{0\},$$

where $\{0\}$ is 0=dimensional, while the first orbit **O** is 2-dimensional. Hartogs' theorem implies that

$$C[\mathcal{N}] = C[O].$$

Orbit-stabilizer theorem gives

$$\mathbf{O} \cong PSL_2\mathbf{C}/N$$
,

the point being that a central element diag $(\lambda, -\lambda)$ rescales the nilpotent matrix by λ^2 , so $\lambda = \pm 1$ fixes it.

The map $PSL_2\mathbf{C}/N \to SL_2\mathbf{C}/B$ is a line bundle on \mathbf{CP}^1 . A fiber over $l \in \mathbf{CP}^1$ is $l/\pm \cong l^2$. We conclude that \mathbf{O} is the total space of $\mathcal{O}(-2) = T^*\mathbf{P}^1$ (minus the zero section).

$$\mathbf{C}[SL_2\mathbf{C}/N]^{\pm \mathrm{id}} = \bigoplus_n V_n^{\pm \mathrm{id}} = \bigoplus_l V_{2l} = H.$$

Note, that \mathcal{N} is singular. Representation theory gives a way to resolve it (Springer resolution): let $\tilde{\mathcal{N}}$ be the space of $x \in \mathcal{N}$ and lines $l \in \mathbf{P}^1$, preserved by x.

One has maps $\tilde{\mathcal{N}} \to \mathcal{N}$ and $\tilde{\mathcal{N}} \to \mathbf{P}^1$ by forgetting one of the pieces. What is the fiber over $x \in \mathcal{N}$? If x = 0, l can be anything (i.e. \mathbf{P}^1). If $x \neq 0$, there is a single l, fixed by x (since x gives a flag).

Generic fiber looks like

$$\mathbf{O}_{\mathrm{diag}(\lambda,-\lambda)} = SL_2\mathbf{C}/H.$$

By Peter-Weyl we have

$$\mathbf{C}[\mathbf{O}_{\mathrm{diag}(\lambda,-\lambda)}] = \bigoplus_n V_n \otimes (V_n)^H = \bigoplus_l V_{2l}.$$

Theorem (Kostant, Wallach). $\mathbf{C}[\mathfrak{g}] \cong \mathbf{C}[\mathfrak{g}]^G \otimes H$.

How to pick $H \subset \mathbf{C}[\mathfrak{g}]$? Want to consider functions constant along the base $\mathbf{C}[fq]^G$.

Let V be a vector space with a G-action. To be continued next time.

Date: 03/01

Reference for the adjoint quotient: Chriss and Ginzburg, Representation Theory and Complex Geometry.

Theorem (Kostant-Wallach). $\mathbf{C}[\mathfrak{g}] \cong \mathbf{C}[\mathfrak{g}]^G \otimes H$.

Note, that $\mathbf{C}[X \times Y] \cong \mathbf{C}[X] \otimes \mathbf{C}[Y]$.

Suppose V is a vector space (e.g. \mathbb{C}^3). Introduce \mathcal{D}_V , the algebra of constant coefficient differential operators on V (left-invariant differential operators on the abelian Lie group V). It has a basis consisting of monomials of the form $\frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j}$.

One can identify $\mathcal{D}_V = \operatorname{Sym} V \cong U(V)$. We aso have $\mathbf{C}[V] = \operatorname{Sym} V^*$. There is a non-degenerate pairing

$$\mathcal{D}_V \otimes \mathbf{C}[V] \to \mathbf{C}$$

 $D \otimes P \mapsto (D \cdot P)(0).$

If D and P have the same degree (i.e. both are homogeneous), then $D \cdot P$ is a constant (DP)(0). If D and P have different degrees, then (DP)(0) = 0.

If G acts on V, then one has $\mathcal{D}_V^G \subset \mathcal{D}_V$, G-invariant constant coefficient operators.

Definition. A function $P \in \mathbb{C}[V]$ is G-harmonic if $D \cdot P = 0$ for all $D \in \mathcal{D}_V^G$ with 0 constant term.

Examples:

- (1) If the action of G on V is trivial, then $\mathcal{D}_V^G = \mathcal{D}_V$, and harmonic polynomials are the same as constants.
- (2) For the standard action of SO_3 on \mathbb{C}^3 , one has $\mathcal{D}_{\mathbb{C}^3}^{SO_3} = \mathbb{C}[\Delta]$. We want to compute

$$[\operatorname{Sym}(V = \mathbf{C}^3 = V_2 = \mathfrak{g})]^{SO_3},$$

let's consider its dual first:

$$[\operatorname{Sym} \mathfrak{g}^*]^G = \mathbf{C}[\mathfrak{g}]^G = \mathbf{C}[a^2 + bc].$$

Dualizing back, we get $\mathcal{D}_{\mathbf{C}^3}^{SO_3} = \mathbf{C}[\Delta]$. Then harmonic polynomials are indeed harmonic.

So,

$$\mathbf{C}[V] \cong \mathbf{C}[V]^G \otimes H,$$

where H consists of harmonic polynomials. This is true if $\mathbb{C}[V]$ is free as a $\mathbb{C}[V]^G$ -module, i.e. $V \to V/G$ is flat.

In our case $\mathbf{C}[\mathfrak{g}]^G$ is a 1-dimensional polynomial ring, so free is the same as torsion-free.

We get

$$H = \oplus V_{2l} \subset \mathbf{C}[\mathfrak{g}],$$

where the inclusion is given by harmonic polynomials. Restriction to any fiber is an isomorphism.

This is the same as separation of variables: if f harmonic polynomial on \mathbf{R}^3 , then $f \mapsto f|_{S^2}$ is an isomorphism $H \to \mathbf{C}[S^2]$.

Equivalently, if f is an eigenfunction of Δ_{S^2} on S^2 , then there is a unique extension \tilde{f} to \mathbb{R}^3 as a harmonic polynomial.

Characters. Let V be a finite-dimensional representation of G. One has a map

$$V \otimes V^* \to \mathbf{C}[G]$$

given by matrix elements.

But one also has End $V \cong V \otimes V^*$. It has an element $\mathrm{id}_V \in \mathrm{End}\,V$, which maps precisely to the character χ_V .

In bases e_i, e^i of V and V^* we have

$$\mathrm{id}_V = \sum e_i \otimes e^i.$$

Then

$$\chi_V(g) = \sum_i \langle e^i, g \cdot e_i \rangle = \operatorname{tr}_V g.$$

For example, $\chi_V(1) = \dim V$, which makes sense only if V is finite-dimensional.

If V is irreducible, then $\mathbf{C} \operatorname{id}_V \subset V \otimes V^*$ is precisely the diagonal G-invariants. This is easily seen from Schur's lemma: $(\operatorname{End} V)^G = \operatorname{End}_G V = \mathbf{C} \operatorname{id}$.

Even if V is not irreducible, then id_V is invariant under diagonal G, so $\chi_V \in \mathbf{C}[G]^G$, i.e. it is a class function.

$$\mathbf{C}[G]^G \cong \bigoplus_{V \text{ fd irreps}} (V \otimes V^*)^G$$
$$= \bigoplus_{V \text{ fd irreps}} \mathbf{C}\chi_V,$$

so class functions are spanned by characters, which are linearly independent. In other words,

$$\chi: \{\text{irreps}\} \leftrightarrow \{\text{class functions}\}.$$

Consider χ_V restricted to $H \cong \mathbf{C}^{\times} \subset SL_2\mathbf{C}$. Elements of H are $\operatorname{diag}(q, q^{-1})$.

As a H-representation,

$$V \cong \bigoplus_{n \in \mathbf{Z}} [V]_n,$$

where

$$\left(\begin{array}{c} q \\ & q^{-1} \end{array}\right) \cdot v = q^n v$$

for any element $v \in [V]_n$.

Then

$$\chi_V\left(\left(\begin{array}{c} q \\ q^{-1} \end{array}\right)\right) = \sum_{n \in \mathbf{Z}} \dim[V]_n q^n.$$

This is symmetric under $q \leftrightarrow q^{-1}$. So, it gives a function on H/W.

Theorem (Chevalley restriction). $\mathbf{C}[G]^G \to \mathbf{C}[H]^W$.

So, a character is completely determined by a list of numbers. Weyl character formula:

$$\chi_{V_n}(q) = q^{-n} + q^{-n+2} + \dots + q^{n-2} + q^n$$

One has

$$\frac{1}{1-q^{-2}} = 1 + q^{-2} + q^{-4} + q^{-6} + \dots$$

Then we can write

$$\chi_{V_n}(q) = q^n \left(\frac{1}{1 - q^{-2}}\right) - q^{-n-2} \left(\frac{1}{1 - q^{-2}}\right)$$

$$= \frac{q^n - q^{-n-2}}{1 - q^{-2}}$$

$$= \frac{q^{n+1} - q^{-n-1}}{q - q^{-1}},$$

this is what the usual Weyl character formula gives.

$$\chi_{V_n}(q) = \frac{\sum_{w \in W} (-1)^{\operatorname{sign} w} q^{w(n+1)}}{\sum_{w \in W} (-1)^{\operatorname{sign} w} q^{-w}}.$$

Verma modules. A collection of infinite-dimensional of \mathfrak{g} (or, equivalently, a module for $U\mathfrak{g}$).

Recall the Borel

$$\mathfrak{b} = \operatorname{span}(e, h) = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}.$$

Consider a 1-dimensional representation of \mathfrak{b} $\mathbf{C}_{\lambda} = \mathbf{C}v_{\lambda}$ for some $\lambda \in \mathbf{C}$. The relations are

$$ev_{\lambda} = 0, \quad hv_{\lambda} = \lambda v_{\lambda}.$$

This is a representation of B iff λ is an integer. Define the Verma module to be

$$M_{\lambda} = \operatorname{Ind}_{U\mathfrak{h}}^{U\mathfrak{g}} \mathbf{C}_{\lambda} := U\mathfrak{g} \otimes_{U\mathfrak{b}} \mathbf{C}_{\lambda} = U\mathfrak{g} \otimes v_{\lambda} / \sim,$$

where $xb \otimes v_{\lambda} \sim x \otimes (bv_{\lambda})$ for any $x \in U\mathfrak{g}, b \in U\mathfrak{b}$.

So,

$$M_{\lambda} = U\mathfrak{g}/U\mathfrak{g}\langle e, h - \lambda \rangle.$$

As a vector space

$$M_{\lambda} \cong U\mathfrak{n}_{-}v_{\lambda} = \mathbf{C}[f] \cdot v_{\lambda},$$

this follows from the PBW theorem.

In fact, this is true as a $U\mathfrak{n}$ -module.

We would like to say that its character is

$$q^{\lambda} \frac{1}{1 - q^{-2}},$$

but this makes sense only if $\lambda \in \mathbf{Z}$.

If $\lambda = n \in \mathbf{Z}$, then M_n is a representation of \mathfrak{g} and of group H. Then $\operatorname{diag}(q, q^{-1})$ acts by q^k on k-th eigenspace. And as such it has character

$$\frac{q^n}{1 - q^{-2}}.$$

Let (\mathfrak{g}, K) be as follows: \mathfrak{g} is a Lie algebra, K Lie group; $\mathfrak{k} = \text{Lie } K \subset \mathfrak{g}$ and Ad: action of K on \mathfrak{g} .

Definition. A (\mathfrak{g}, K) -module is a vector space V with actions of K and \mathfrak{g} , which agree on \mathfrak{k} . Moreover, $k(x \cdot v) = \operatorname{Ad} k(x)k \cdot v$ for $k \in K$ and $x \in \mathfrak{g}$.

So, it is a representation of \mathfrak{g} , such that the action of $\mathfrak{k} \subset \mathfrak{g}$ integrates. Harish-Chandra: equivalence between theories of admissible representations of G and admissible (\mathfrak{g}, K) -modules, where $\mathfrak{g} = \text{Lie } G$ and K is the maximal compact subgroup.

Here admissible means that every irreducible representation of K appears with a finite multiplicity. This includes irreducible unitary representations.

Want to study $G = SL_2\mathbf{R}$, then K = SO(2), the group of rotations

$$\left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right).$$

The Lie algebra of G is ${}_{2}\mathbf{R}$, but any representation of ${}_{2}\mathbf{R}$ on a complex vector space extends to the complexification $\mathfrak{g} = {}_{2}\mathbf{C}$.

Want to classify modules M for $\mathfrak{g} =_2 \mathbf{C} = \operatorname{span}\{\mathbf{e}, \mathbf{h}, \mathbf{f}\}$, such that h eigenvalues are all integers. Therefore, $M = \bigoplus_{n \in \mathbf{Z}} M_n$, where each M_n is finite-dimensional. Moreover, we can split $M = M^{even} \oplus M^{odd}$ and the \mathfrak{g} -action preserves the summands separately.

Let's use the Casimir: $C = 2ef + 2fe + h^2$. If M is irreducible, C acts by a scalar. We do not assume irreducibility, but let's assume C does act by a scalar.

If M, N are two representations in which C acts by a different scalar, then $\operatorname{Hom}_{\mathfrak{g}}(M, N) = 0$ (moreover, there are no extensions).

Fix M, so that C acts on M by $\lambda^2 - 1$. E.g. if we have a highest-weight vector v_n and $hv_n = nv_n$, $ev_n = 0$, i.e. $v_n \in M_n$.

Then $C = 2ef + 2fe + h^2$ acts by

$$Cv_n = 2efv_n + h^2v_n = (n^2 + 2n)v_n.$$

In this case $\lambda = n + 1$.

Let's take $v \in M_n$, i.e. hv = nv. We also have

$$\lambda^{2}v = (C+1)v$$

$$= (2ef + 2fe + h^{2} + 1)v$$

$$= (4ef + h^{2} - 2h + 1)v$$

$$= 4ef \cdot v + (n^{2} - 2n + 1)v.$$

So,

$$ef \cdot v = \frac{1}{4} \left((n-1)^2 - \lambda^2 \right) v.$$

Similarly,

$$fe \cdot v = \frac{1}{4} \left((n+1)^2 - \lambda^2 \right).$$

Therefore, ef is invertible unless $\lambda = \pm (n-1)$ and fe is invertible unless $\lambda = \pm (n+1)$.

• $\lambda \notin \mathbf{Z}$, then e and f are invertible on M. We only need to specify one of the vector spaces in the even chain and one in the odd chain. Hence,

$$\operatorname{Mod}_{(\mathfrak{g},K)}^{C+1=\lambda^2} \cong \operatorname{Vect} \oplus \operatorname{Vect}.$$

We have 2 irreducible representations for each $\lambda \notin \mathbf{Z}$: the one with all even vector spaces being 1-dimensional and the one with all odd vector space being 1-dimensional.

These are called the principal series representations (or "nonunitary principal series").

- $\lambda \in \mathbf{Z} \setminus 0$, and λ and n are odd (the same for even). Again we have principal series.
- λ is odd and n is even. We have 3 chunks: $(-\infty, -\lambda 1)$, $(-\lambda+1, \lambda-1)$ and $(\lambda+1, \infty)$. All the maps inside the chunks are isomorphisms. So, we need to specify 3 vector spaces: A, B, C and the maps

$$C \stackrel{r,s}{\leftrightarrow} A \stackrel{p,q}{\leftrightarrow} B$$
.

We have rs = sr = 0 and qp = pq = 0. Recall

Definition. A quiver is a directed graph.

Definition. A representation of a quiver is the data of a vector space for each vertex and a morphism for each edge.

So, we get

Theorem. Category of admissible even representations of (2, K) with λ an odd integer is equivalent to the category of representations of the quiver above with relations.

We can ask about irreducible representations. There are three irreps: (C00), (0C0) and (00C).

For example, $(0\mathbf{C}0)$ corresponds to the finite-dimensional irrep. $(\mathbf{C}00)$ is a highest-weight Verma module. $(00\mathbf{C})$ is a lowest-weight dual Verma module.

But the representations are not necessarily semisimple: consider (**CC**0) with the map $A \to C$ nonzero. This is again a Verma module, it has a subrepresentation (**C**00) and a quotient (0**C**0), but it is not a direct sum.

The representations corresponding to (C00) and (00C) are called discrete series representations.

• $\lambda = 0$. In this case there are only two chunks: $(-\infty, -1)$ and $(1, \infty)$. We get an odd representation parametrized by the quiver $C \leftrightarrow B$ with pq = qp = 0. These are called "limits of discrete series".

Principal series.

$$SL_2\mathbf{R} = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

where $a, b, c, d \in \mathbf{R}$ and ad - bc = 1. It acts on \mathbf{CP}^1 by Möbius transformations preserving $\mathbf{RP}^1 = \mathbf{R} \cup \infty$. Moreover, it maps the upper half-plane to itself.

Let's make a change of coordinates:

$$z \mapsto \frac{z-i}{z+i}$$
.

This transforms $SL_2\mathbf{R}$ into SU(1,1), which consists of Möbius transformations preserving the disc.

$$SU(1,1) = \left(\begin{array}{cc} \alpha & \beta \\ \overline{\beta} & \overline{\alpha} \end{array} \right),$$

where $|\alpha|^2 - |\beta|^2 = 1$.

We'll replace e, h, f by

$$E = \frac{1}{2} \left(\begin{array}{cc} 1 & -i \\ -i & -1 \end{array} \right), \quad H = i \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \quad F = \frac{1}{2} \left(\begin{array}{cc} 1 & i \\ i & -1 \end{array} \right).$$

In particular, the exponential of H coincides with the usual rotation matrix.

Let's consider the Borel subgroup

$$B_{\mathbf{R}} = \left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array} \right),$$

where $a, b \in \mathbf{R}$.

Let's decompose $B_{\mathbf{R}} = MAN$, where $M = \pm id$,

$$A = \left(\begin{array}{cc} a & 0\\ 0 & a^{-1} \end{array}\right),\,$$

for a > 0, and

$$N = \left(\begin{array}{cc} 1 & * \\ 0 & 1 \end{array}\right).$$

Consider $\mathbf{C}_{b,s}$, a 1-dimensional representation of $B_{\mathbf{R}}/N$. b is either trivial or the sign representation of $\mathbf{Z}/2$. $s \in \mathbf{C}$ gives a representation of \mathbf{R}_+ :

$$a \mapsto a^s$$
.

Any $g \in B_{\mathbf{R}}$ acts on $\mathbf{C}_{b,s} = \mathbf{C}v_{b,s}$ as

$$g \cdot v_{b,s} = (man)v_{bs}$$
$$= (-1)^{b(m)}a^s v_{b,s}.$$

Then $V_{b,s} = \operatorname{Ind}_{B_{\mathbf{R}}}^{SL_2\mathbf{R}} \mathbf{C}_{b,s}$, i.e.

$$V_{b,s} = \{F : SL_2\mathbf{R} \to \mathbf{C} \text{ smooth} | F(gman) = (-1)^{b(m)}a^sF(g)\}.$$

Date: 03/29

Principal series. $G = SL_2\mathbf{R} \supset B$ the Borel subgroup. We used the Langlands decomposition: B = MAN.

Irreps of $B/N = MA = \mathbf{R}^{\times}$ (which is abelian) are 1-dimensional and denoted by $\mathbf{C}_{b,s}$: parametrized by $s \in \mathbf{C}$ and a sign.

$$V_{b,s} = \operatorname{Ind}_B^{SL_2\mathbf{R}} \mathbf{C}_{b,s},$$

the smooth induction.

$$SL_2\mathbf{R}/N = \mathbf{R}^2 \backslash 0.$$

$$SL_2\mathbf{R}/AN = S^1$$
.

Finally,

$$SL_2\mathbf{R}/B = \mathbf{RP}^1$$
.

Iwasawa decomposition: G = KAN, where $K = SO_2$ is the maximal compact. This is exactly the Gram-Schmidt orthogonalization, since this is just $G = SO_2B_{\mathbf{R}}^+$.

$$G/AN \xrightarrow{\sim} K \xrightarrow{\sim} S^1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$G/B \xrightarrow{\sim} K/M \xrightarrow{\sim} \mathbf{RP}^1$$

Fix $s \in \mathbb{C}$. Then C^{∞} -functions on $\mathbb{R}^2 \setminus 0$ which are s-homogeneous, i.e. $f(ax) = a^s f(x)$, are isomorphic to $C^{\infty}(S^1)$, which is the same as $C^{\infty}(K)$.

So, $V_{b,s}$ consists of functions $\tilde{F} \in C^{\infty}(K)$, such that $\tilde{F}(km) = (-1)^{b(m)}\tilde{F}(k)$.

Spherical principal series consist of the representations with b(m) = 1.

Recall, an s-form on **R** is an expression $f(x)dx^s$. Functions act as

$$g \cdot (f(x)dx^{s}) = f(g^{-1}x)(d(g^{-1}x))^{s}$$
$$= f(g^{-1}x)((g^{-1})')^{s}dx^{s}.$$

s-density is an expression of the form $f(x)|dx|^s$. Similarly,

$$g \cdot (f(x)|dx|^s) = f(g^{-1}x)|(g^{-1})'|^s|dx|^s.$$

We have a line bundle $\mathbf{R}^{\times} \to \mathbf{R}^2 \setminus 0 \to \mathbf{RP}^1$. This is similar to the tautological line bundle $\mathcal{O}(-1)$ on \mathbf{CP}^1 : $\mathbf{C}^{\times} \to \mathbf{C}^2 \setminus 0 \to \mathbf{CP}^1$.

The cotangent bundle is $\mathcal{O}(-2)$. Therefore, sections of $\mathcal{O}(-1)$ are $\frac{1}{2}$ -forms.

Linear functions on $\mathbb{R}^2 \setminus 0$ are the same as sections of $\mathcal{O}(1)$, i.e. $-\frac{1}{2}$ -forms.

 $V_{b,s}$ is the space of C^{∞} -sections of $\mathcal{O}(1)^{\int}$, where $\int : \mathbf{R}^{\times} \to \mathbf{C}^{\times}$.

Proposition. $V_{b,s}$ consists of -s/2-densities on \mathbb{RP}^1 for b the trivial representation and -s/2-forms for b the sign representation.

Proof. Let $\mathbf{RP}^1 = G_{\mathbf{R}}/B_{\mathbf{R}}$ and consider

$$N_{-} = \left(\begin{array}{cc} 1 & 0 \\ * & 1 \end{array}\right) \subset G.$$

On the Lie algebra level, we have $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{b}$, so there is an open dense subset of G/B, which is isomorphic to N_- .

Similarly, we have $N_{-}B \subset G$ an open dense subset.

Take $F \in V_{b,s}$ and restrict it to $N_- \cong \mathbf{R}$, get $f \in C^{\infty}(\mathbf{R})$. Concretely,

$$f(x) = F\left(\left(\begin{array}{cc} 1 & 0\\ x & 1 \end{array}\right)\right).$$

Take

$$G\ni g=\left(\begin{array}{cc}a&b\\c&d\end{array}\right),$$

then

$$g^{-1} = \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right).$$

It acts as

$$g^{-1} \cdot x = g^{-1} \begin{pmatrix} 1 \\ x \end{pmatrix} = \frac{ax - c}{-bx + d}.$$

The derivative is

$$(g^{-1})' = \frac{1}{(-bx+d)^2}.$$

It acts on a function $f \in C^{\infty}(\mathbf{R})$ as

$$(g \cdot f)(x) = F\left(g^{-1} \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}\right)$$

$$= F\left(\begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}\right)$$

$$= F\left(\begin{pmatrix} d - bx & -b \\ -c + ax & a \end{pmatrix}\right)$$

$$= F\left(\begin{pmatrix} 1 & 0 \\ \frac{ax - c}{-bx + d} & 1 \end{pmatrix} \cdot \begin{pmatrix} d - bx & -b \\ 0 & \frac{1}{d - bx} \end{pmatrix}\right)$$

$$= f\left(\frac{ax - c}{-bx + d}\right) \cdot (-1)^{b(d - bc)} |d - bx|^{s}$$

$$= f(g^{-1}x)(-1)^{b(d - bx)} |(g^{-1})'|^{-s/2}.$$

What is the action of e, f, h? $f \in \text{Lie } N_- \text{ act as } -\frac{d}{dx}$.

$$(\exp(tf) \cdot f)(x) = f(x - t).$$

$$(\exp(te)f)(x) = f\left(\begin{pmatrix} 1 & -t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}\right)$$
$$= f\left(\frac{x}{-tx+1}\right)(-1)^{b(-tx+1)}|-tx+1|^{s}.$$

One computes

$$e = x^{2} \frac{d}{dx} - sx$$
$$h = 2x \frac{d}{dx} - s$$

The Casimir is $C = 2ef + 2fe + h^2 = s^2 + 2s$. So,

$$C+1=\lambda^2, \quad \lambda=s+1.$$

The basis for the Fourier modes is

$$f_n = e^{2\pi i n \theta} (d\theta)^{s/2}.$$

On the real line $x = -\tan \theta$, so

$$f_n = e^{-2\pi i n \arctan x} (1+x^2)^{s/2} |dx|^{-s/2}.$$

The SU(1,1) generators H,X,Y act naturally on f_n . For example, $Hf_n=nf_n$.

Lemma.
$$X f_n = \frac{-n-2}{2} f_{n+2}$$
. Similarly, $Y f_n = \frac{n+s}{2} f_{n-2}$.

When $s \notin \mathbf{Z}$, we get the spherical representation and the odd one. For s = -1 (i.e. -s/2 = 1/2, we are looking at half-forms), the even representation is irreducible, while the odd representation breaks as a direct sum of two.

For n = s > -1 we have the representation which is represented by a quiver $\mathbf{C} \to \mathbf{C} \leftarrow \mathbf{C}$. It has a finite-dimensional subrepresentation: the full representation consists of C^{∞} sections of $\mathcal{O}(n)$; the subset corresponds for polynomial sections of $\mathcal{O}(n)$, i.e. homogeneous polynomials of degree n, i.e. V_n .

For s < -1 we have the quiver $\mathbf{C} \leftarrow \mathbf{C} \rightarrow \mathbf{C}$ and so the finite-dimensional irreducible representation is a quotient.

Theorem (Casselman's subrepresentation theorem). Every irreducible Harish-Chandra module appears as a subrepreentation of a principal series.

Date: 04/03

Principal series representations. When is a principal series representation unitary?

Suppose $H \subset G$ and (V, \langle, \rangle) is a unitary representation of H, i.e. $H \to U(V) \subset GL(V)$. Can we get a unitary structure on Ind_H^G ? E.g. $V = \mathbb{C}$, $\operatorname{Ind}_H^G \mathbb{C} = C^{\infty}(G/H)$.

$$\langle f, \rangle = \int f \cdot g |dvol|$$

We have

$$\int : Dens(X) \to \mathbf{C}.$$

Here densities Dens(X) are sections of $| \wedge^{top} T^*X |$.

Define $L^2(X)$ the space of 1/2-densities on X, it has a natural pairing since

$$\int f(x)|dx|^{1/2} \cdot g(x)|dx|^{1/2} = \int f(x)g(x)|dx|.$$

For X = G/H we take $T_{1H}^*G/H = (\mathfrak{g}/\mathfrak{h})^*$. Note, that T^*G/H is a G-equivariant vector bundle and so is determined by a representation of H = Stab(1H) on the fiber.

Densities on G/H are sections of an equivariant vector bundle on G/H attached to a representation δ of H:

$$h \mapsto |\operatorname{Det}_{(\mathfrak{g}/\mathfrak{h})^*}(h)|$$

$$= \frac{|\operatorname{Det}_{\mathfrak{h}} h|}{|\operatorname{Det}_{\mathfrak{g}} h|}$$

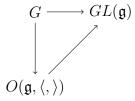
$$= \frac{\delta_G(h)}{\delta_H(h)} \in \mathbf{R}_+$$

In general, take the adjoint representation of G on \mathfrak{g} , then G has a one-dimensional representation on $\wedge^{top}\mathfrak{g}^*$, get a canonical character $\delta_G: G \to \mathbf{R}_+$ called the modular character.

Proposition. G has a biinvariant volume form (density) iff δ_G is trivial.

Proposition. Semisimple Lie groups (e.g. SL_2) are unimodular, i.e. $\delta_G = 1$.

The reason being that ${\mathfrak g}$ has a nondegenerate invariant bilinear form, and so



Note, that \langle , \rangle can be indefinite (for noncompact groups).

$$\delta_{G/B} = \frac{\delta_G}{\delta_B} = \frac{1}{\delta_B}.$$

$$\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$$

action on (e, h) is (a^2e, h) . The modular character is

$$B \to \mathbf{R}_{+}$$

$$\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mapsto |a|^{-2}.$$

In other words, $L^2(\mathbf{RP}^1)$, the space of half-densities on \mathbf{RP}^1 , is $\mathrm{Ind}_B^G(\delta_{G/B}^{1/2})$, which is the same as $V_{b,s}$ for b the trivial representation and s=-1.

Normalized/unitary induction:

$$U\operatorname{Ind}_H^G(V,\langle,\rangle)=\operatorname{Ind}_H^G(V\otimes\delta_{G/H}^{1/2}),$$

which is the space of smooth section of $\mathcal{V} \otimes Dens^{1/2}$, i.e. half-densities valued in \mathcal{V} . Concretely, it consists of

$$\{F: G \to V | F(gh) = F(g)\delta^{1/2}(h)\pi_V(h)\}.$$

Now let's add a condition

$$\int_{G/H} \langle F, F \rangle < \infty.$$

Inner product of F, G, two half-densities in \mathcal{V} :

$$(F,G) = \int_{G/H} \langle F, \overline{G} \rangle,$$

where \langle , \rangle is the Hermitian inner product on \mathcal{V} .

Recall the principal series representations were defined by $V_s + \operatorname{Ind}_B^G \mathbf{C}_s$. When is \mathbf{C}_s a unitary representation of B? It is just

$$\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mapsto |a|^s (-1)^{\text{sign}} \in U(1).$$

This is true if s is purely imaginary, i.e. $\Re s = 0$.

Corollary. V_s is unitary if $\Re s = -1$.

The line $\Re s = -1$ consists of the so-called unitary principal series. For example, the point s = -1 corresponds to the action of $SL_2\mathbf{R}$ on $L^2(\mathbf{RP}^1)$.

In general, we have

$$\overline{V}_s^* \stackrel{\sim}{\to} V_{-2-s},$$

i.e. we have a natural pairing $V_{-2-s} \otimes V_2 \to \mathbf{C}$. Indeed, we have

$$\mathcal{V}_s \otimes \mathcal{V}_{-2-s} \stackrel{\sim}{\to} \mathcal{V}_{-2} \stackrel{\sim}{\to} Dens \stackrel{\int}{\to} \mathbf{C}.$$

For $s \notin \mathbf{Z}$, the Harish-Chandra modules V_s and V_{-2-s} are isomorphic. Recall, that we had a formula for the Casimir:

$$C+1=(s+1)^2$$
,

which is the same for V_s and V_{-2-s} .

The Casimir $C \in Z$ gives a function on the parameter space for principal series since it acts by a scalar on each V_s (away from integral points).

The function $C = (s+1)^2 - 1$ is shifted $\mathbb{Z}/2 = W$ -invariant.

Question: can we construct an isomorphism $V_s \stackrel{\sim}{\to} V_{-2-s}$?

 $\operatorname{Ind}_{B}^{G} \mathbf{C}_{s}$, where s was a character of

$$H_{\mathbf{R}} = \begin{pmatrix} * \\ * \end{pmatrix} \cong \mathbf{R}^{\times} \cong \mathbf{R}_{+} \times \mathbf{Z}_{2}.$$

So, we get a functor from representations of H to representation of $SL_2\mathbf{R}$ called the parabolic induction. This is not the usual induction, instead we first go through representations of B (where $H \cong B/N$) and then use the usual induction.

$$W = N_G(H)/H = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \mod \text{diagonal matrices}.$$

Let's call the nontrivial element by $w \in W$.

W acts on H:

$$\left(\begin{array}{cc} a & \\ & a^{-1} \end{array}\right) \stackrel{w}{\mapsto} \left(\begin{array}{cc} a^{-1} & \\ & a \end{array}\right),$$

so it acts on characters of H:

$$\mathbf{C}_s \to \mathbf{C}_{-s}$$
.

So, W acts on representation of H, but W also acts on B: the nontrivial element w maps B to the opposite Borel subgroup B_- .

So, we get an isomorphism

$$\operatorname{Ind}_{B}^{G} \mathbf{C}_{s} \xrightarrow{\sim} \operatorname{Ind}_{B_{-}}^{G} \mathbf{C}_{-s}$$
$$f \mapsto \tilde{f}(g) = f(gw).$$

Define

$$I(f) = \int_{N} \tilde{f}(g \cdot n) dn = \int_{N} f(gnw) dn.$$
$$(I(g \cdot f))(h) = \int_{N} f(g^{-1}hnw) dn$$
$$= \int_{N} f(g^{-1}(gnw)) dn$$
$$= (g \cdot I(f))(h)$$

So, $I: \operatorname{Fun}(G) \to \operatorname{Fun}(G)$ commutes with the group action, i.e. is a map of G-representations. It is also called an intertwiner.

Date: 04/05

Last time we considered $V_s = \operatorname{Ind}_B^G \mathbf{C}_s$ and we had a symmetry $s \to -s - 2$.

$$I(f)\left(g\begin{pmatrix}a&b\\&a^{-1}\end{pmatrix}\right) = \int_{N} f\left(g\begin{pmatrix}a&b\\&a^{-1}\end{pmatrix}\begin{pmatrix}1&n\\&1\end{pmatrix}w\right) dn$$

$$= \int_{N} f\left(g\begin{pmatrix}a\\&a^{-1}\end{pmatrix}\begin{pmatrix}1&b+n\\&1\end{pmatrix}w\right) dn$$

$$= \int_{N} f\left(g\begin{pmatrix}a\\&a^{-1}\end{pmatrix}\begin{pmatrix}1&n\\&1\end{pmatrix}w\right) dn$$

$$= \int_{N} f\left(g\begin{pmatrix}1&a^{2}n\\&1\end{pmatrix}w\begin{pmatrix}a^{-1}&1\\&a\end{pmatrix}\right) dn$$

$$= |a|^{-s} \int_{N} f\left(g\begin{pmatrix}1&a^{2}n\\&1\end{pmatrix}w\right) dn$$

$$= |a|^{-s} \int_{N} f\left(g\begin{pmatrix}1&a^{2}n\\&1\end{pmatrix}w\right) \frac{dn'}{|a|^{2}}$$

So, I of V_s is precisely V_{-s-2} .

Proposition. I converges for $\Re s \gg 1$ and has an analytic continuation to \mathbf{C} with poles at negative integers.

For s not integer both V_s and V_{-s-2} are irreducible, so I is an isomorphism.

For $s \notin \mathbf{Z}$ we had a non-degenerate Hermitian pairing between V_s and V_{-s-2} , while the latter is now identified with V_s , so we have a non-degenerate Hermitian inner product on V_s . However, it is not positive-definite. Otherwise, V_s would be unitary.

Theorem. The Hermitian pairing is unitary iff -2 < s < 0.

These are called the complementary series.

Let **V** be an irreducible representation and V the corresponding (\mathfrak{g},K) -module.

Theorem (Unitarizability). **V** is a unitary representation iff V has \langle, \rangle is a positive-definite invariant inner product.

$$\langle hv, w \rangle = -\langle v, hw \rangle$$
$$\langle ev, w \rangle = -\langle v, ew \rangle$$
$$\langle fv, w \rangle = -\langle v, fw \rangle.$$

Let's use a different basis using an isomorphism $SL_2\mathbf{R} \cong SU(1,1)$. Then we have

$$H = H^*, \quad X^* = -Y.$$

Let $s+1=\lambda\not\in {\bf Z}.$ Then the corresponding representation has a basis

$$v_{2n} = X^n v_0, \quad n \in \mathbf{Z},$$

where v_0 is a vector in the weight 0 subspace.

Define

$$Yv_n = c_{n-2}v_{n-2}, \quad ||v_n||^2 = a_n^2.$$

We know

$$XYv_n - YXv_n = nv_n = (c_{n-2} - c_n)v_n.$$

We also have

$$a_{n+2}^2 = \langle Xv_n, v_{n+2} \rangle = -\langle v_n, Yv_{n+2} \rangle = -\overline{c}_n a_n^2$$

so c_n is real and negative.

$$(C+1)v_n = \lambda^2 v_n = (s+1)^2 v_n.$$

So,

$$\lambda^2 v_n = v_n (1 + n^2 + 2c_{n-2} + 2c_n).$$

Therefore,

$$\lambda^2 - n^2 - 1 = 4c_n + 2n.$$

We get

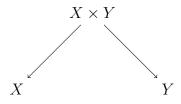
$$4c_n = \lambda^2 - (n+1)^2 < 0$$

for every $n \in 2\mathbf{Z}$.

Corollary. V_s is unitarizable only if $\lambda \in i\mathbf{R}$ (i.e. $s \in i\mathbf{R} - 1$) or $-1 < \lambda < 1$ (-2 < s < 0).

Function theories. X and Y manifolds (e.g. finite sets).

What are the maps $\operatorname{Fun}(X) \to \operatorname{Fun}(Y)$? If both are finite sets, the maps are given by matrices.



Take $K(x, y) \in \operatorname{Fun}(X \times Y)$.

A function $f \in \operatorname{Fun}(x)$ is mapped to $K * f \in \operatorname{Fun}(Y)$ by

$$K * f(y) = \int_X K(x, y) f(x) dx.$$

This gives an isomorphism

$$\operatorname{Fun}(X \times Y) \xrightarrow{\sim} \operatorname{Hom}(\operatorname{Fun}(X), \operatorname{Fun}(Y)).$$

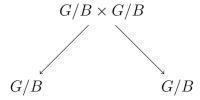
Recall the Riesz representation theorem: maps $L^2(X) \to L^2(\text{pt})$ are representable by $f \in L^2(X \times \text{pt})$.

Similarly, there is the Schwartz representation theorem

$$\operatorname{Hom}(C^{\infty}(X), C^{\infty}(Y)) = Dist(X \times Y).$$

Here we need distributions, since for example the identity function is the δ -function supported on the diagonal.

Now consider the flag manifold $G/B = \mathbf{RP}^1$.



$$C_s^{\infty}(G/B) \to C_s^{\infty}(G/B)$$
, a G-map.

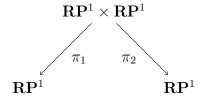
Lemma. Intertwiners (i.e. G-invariant maps) are given by G-invariant integral kernels (G acts diagonally on $G/B \times G/B$).

$$K(x,y) = K(gx, gy).$$

G-orbits in $G/B \times G/K$ is

$$G\backslash G/B\times G/K=B\backslash G/K.$$

Recall the Bruhat decomposition $B\backslash G/B$.



There are only two G-orbits in the product: the diagonal Δ and its complement $\mathcal{H} = \mathbf{RP}^1 \times \mathbf{RP}^1 \setminus \Delta$. Let $\pi_{1,2} : \mathcal{H} \to \mathbf{RP}^1$

We have the Radon transform:

$$I(f) = \int_{\pi_2} \pi_1^* f.$$

That means

$$I(f)(l') = \int_{l \neq l'} f(l)dl.$$

This is precisely the intertwiner we wrote down before. Elements $g \in SL_2\mathbf{R}$ fall into 3 types:

- Hyperbolic: $|\operatorname{tr} g| > 2$. Equivalently, it is conjugate to $\begin{pmatrix} a \\ a^{-1} \end{pmatrix}$ for $a \in \mathbf{R}$. It has 2 fixed pints on S^1 .
- Parabolic: $|\operatorname{tr} g| = 2$, conjugate to $\pm \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Have a single fixed point on S^1 . These are translations on the upper half-plane.
- Elliptic: $|\operatorname{tr} g| < 2$, conjugate to $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. These are rotations of the disk, so there is a single fixed point.

Last time we had parabolic elements which were unipotent and hyperbolic and elliptic elements which were semisimple, i.e. diagonalizable over $\overline{\mathbf{R}} = \mathbf{C}$ (they were also regular, i.e. distinct eigenvalues). Hyperbolic elements are split: diagonalizable already over \mathbf{R} .

Centralizer of hyperbolic elements is $Z_G(g)^0 \cong \mathbf{R}_+$. Centralizer of elliptic elements is $Z_G(g) \cong S^1$. These are both real forms of \mathbf{C}^{\times} . So, these are two tori of $SL_2\mathbf{R}$.

In $SL_2\mathbf{R}$ there are 2 conjugacy classes of maximal tori: split and compact.

Recall, that for a finite group the number of conjugacy classes coincides with the number of irreps. For finite abelian group: the set of conjugacy classes is in bijection with irreps of \hat{G} .

Harish-Chandra: enumerate representations of G using tori.

Representations of G come in series, one for each conjugacy class of tori in G. Series is the same as irreps of T modulo W_T . Here $W_T = N(T)/T$.

Irreps of a torus are simple: for S^1 the dual group is **Z** (Fourier series), for \mathbf{R}^+ it is **R** (Fourier transform).

Similarly, it works for finite groups of Lie type, e.g. $SL_2\mathbf{F}_p$.

Principal series were parametrized by characters of the split torus $\mathbb{Z}/2 \times \mathbb{R}_+$. We had a symmetry $s \to -s - 2$ which reflects the action of the Weyl group.

Discrete series correspond to characters of a compact torus.

For $SL_2\mathbf{R}$ we have a coincidence: compact torus T is the maximal compact subgroup $SO_2\mathbf{R} \subset SL_2\mathbf{R}$.

Use induction: consider sections of a line bundle on $SL_2\mathbf{R}/T = SL_2\mathbf{R}/K$, it is a symmetric space.

Consider the action of $SL_2\mathbf{R}$ on \mathbf{CP}^1 . There are 3 orbits: upper half-plane \mathbf{H} , lower half-plane \mathbf{H}^- and the equator \mathbf{RP}^1 . We saw that $\mathbf{RP}^1 = SL_2\mathbf{R}/B_{\mathbf{R}}$. Similarly, $\mathbf{H} = SL_2\mathbf{R}/K$.

Let C_n be the following representation of $T: \theta \mapsto e^{2\pi i n \theta}$. The induction is

$$\operatorname{Ind}_{T}^{SL_{2}\mathbf{R}}\mathbf{C}_{n} = \{ F \in C^{\infty}(SL_{2}\mathbf{R}) : \quad F(gt) = \chi_{n}(t)F(g) \}.$$

We have a natural circle bundle $PSL_2\mathbf{R} \to \mathbf{H}$. It turns out the be the unit tangent bundle to \mathbf{H} . Then $SL_2\mathbf{R} \to \mathbf{H}$ is a square root of that

Then the character χ_n gives rise to n/2 forms on **H**, i.e. $(T\mathbf{H})^{-n/2}$. This is a holomorphic line bundle.

We can define the discrete series as

$$D_n = \operatorname{HolInd}_T^{SL_2\mathbf{R}} \mathbf{C}_n,$$

where HolInd is the holomorphic induction:

$$\operatorname{HolInd}_{T}^{SL_{2}\mathbf{R}} \mathbf{C}_{n} = \{f(z)dz^{n/2}: f \text{ holomorphic on } \mathbf{H}\}.$$

An element $g \in SL_2\mathbf{R}$ acts as

$$\begin{split} f(z)dz^{n/2} &\mapsto f(g^{-1}z)(d(g^{-1}(z)))^{n/2} \\ &= f\left(\frac{az-c}{-bz+d}\right)((-bz+d)^2)^{n/2}dz^{n/2} \\ &= f(g^{-1}z)\cdot (-bz+d)^n dz^{n/2}. \end{split}$$

Similarly, could also consider

$$\overline{D}_n = \{\text{antiholomorphic } f(z)dz^{n/2} \text{ on } \mathbf{H}\} = \{\text{holomorphic } f(z)dz^{n/2} \text{ on } \mathbf{H}^-\}.$$

Let's look at the corresponding Harish-Chandra modules. What are the K-types of D_n ?

Let's work on the disk instead of the upper half-plane.

$$f(z) = \sum_{m>0} a_m z^m.$$

An element

$$g = \left(\begin{array}{cc} e^{i\theta} & \\ & e^{-i\theta} \end{array}\right) \in K$$

acts on a monomial $z^m dz^{n/2}$ in the following manner:

$$\begin{split} z^m dz^{n/2} &\mapsto (g^{-1} \cdot z)^m ((g^{-1})')^{n/2} dz^{n/2} \\ &= e^{-2mi\theta} z^m (e^{-2i\theta})^{n/2} dz^{n/2} \\ &= e^{-(2m+n)i\theta} z^m dz^{n/2}. \end{split}$$

We have a series of weights $-n,-n-2,-n-4,\ldots$, the corresponding basis is $dz^{n/2},zdz^{n/2},z^2dz^{n/2},\ldots$

There is a natural unitary structure on these representations. **H** has a hyperbolic (Poincaré) metric: the corresponding volume form is

$$\frac{dx \wedge dy}{y^2} = \frac{dz d\overline{z}}{1 - |z|^2}.$$

The measure is invariant under $SL_2\mathbf{R}$.

$$\begin{split} \langle f,g\rangle &= \int_D f\overline{g} (1-|z|^2)^{n/2-1} |dz| |d\overline{z}| \\ &= \int_D \frac{f(z) dz^{n/2} \overline{g}(z) d\overline{z}^{n/2}}{\frac{dz^{n/2} d\overline{z}^{n/2}}{(1-|z|^2)^{n/2}}} \frac{|dz d\overline{z}|}{1-|z|^2}. \end{split}$$

$$D_n = \{ f(z)dz^{n/2} : ||f||^2 < \infty \}.$$

Recall, that a tempered representation is a unitary representation that appears (weakly) in $L^2(G)$. Equivalently (Langlands classification), it comes from induction of unitary characters of a torus.

Theorem (Harish-Chandra). An irreducible representation V appears in $L^2(G)$ iff V is a discrete series representation.

Recall the Peter-Weyl theorem for compact groups:

$$L^2(G) = \bigoplus_{\text{irreps}} V \otimes V^*.$$

We would like to find a similar decomposition for $\mathbf{H} = G/K$:

$$L^2(G/K) = \bigoplus_{\text{irreps}} V \otimes (V^*)^K$$
.

Our case $K = SO_2$. K-fixed vectors: spherical vectors (weight 0). Recall, that an irreducible Harish-Chandra module M with $M^K \neq 0$ has $M^K \cong \mathbb{C}$. Date: 04/12

Harmonic analysis on H. Here $\mathbf{H} = SL_2\mathbf{R}/SO_2$.

Recall, we had $S^2 = SO - 3/SO_2$ and we proved

$$L^2(S^2) = \widehat{\bigoplus_{\text{even irreps}}} V.$$

Spherical representation V of $SL_2\mathbf{C}/SU_2$ is the one such that $V^{SO_2} \neq 0$, i.e. 0 weight space is nontrivial.

Now, let $SL_2\mathbf{R}$ act on

$$L^2(\mathbf{H}) = \int_{s \in i\mathbf{R} - 1} V_s d\mu.$$

Let $\Delta = -\frac{1}{4}C = -\frac{1}{4}(H^2 + 2XY + 2YX)$. So, on V_s we have $(C+1) = (s+1)^2$, so

$$\Delta = -\frac{1}{4}(s^2 + 2s) = -\frac{s}{2}\left(1 + \frac{s}{2}\right).$$

For $s \in i\mathbf{R} - 1$ we have $\Delta \geq \frac{1}{4}$.

For $s \in [-2,0]$ we have $\Delta \in [0,\frac{1}{4}]$. Finally, for $s \in \mathbb{Z} \setminus \{-1\}$ Δ is negative.

A matrix $g \in SL_2\mathbf{R}$ can be written as (G = KAN decomposition)

$$g = \begin{pmatrix} y^{1/2} & y^{-1/2}x \\ 0 & y^{-1/2} \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Then it acts on the upper half-plane as $g \cdot i = x + iy$.

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + y \frac{\partial^2}{\partial x \partial \theta}.$$

On the upper half-plane we have

$$\Delta_{\mathbf{H}} = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right),\,$$

the Laplace-Beltrami operator on \mathbf{H} . It is a positive self-adjoint operator on $L^2(\mathbf{H})$.

Note, that $L^2(\mathbf{H})_{\Delta=-\frac{s}{2}(1+\frac{s}{2})}=0$ unless s is between [-2,0] or in $i\mathbf{R}-1$.

$$L^2(\mathbf{H})_{\Delta=\lambda} = \{ f : f = \lambda f \}$$

is $SL_2\mathbf{R}$ invariant. For $\lambda \geq \frac{1}{4}$ we have an irreducible representation V_s . For $0 \leq \lambda \leq \frac{1}{4}$ we don't get anything, so there are no complementary series. The spectrum is continuous $\left[\frac{1}{4}, \infty\right)$.

The reason complementary series do not appear is that they are not tempered, i.e. they don't appear in $L^2(SL_2\mathbf{R})$.

Poisson transform. Take a function $f \in C(S^1)$, one can extend it uniquely to a harmonic function on the disc:

$$Pf \in \operatorname{Fun}(\overline{D})$$

$$Pf|_{S^1} = f$$

$$\Delta Pf = 0$$

Explicitly,

$$Pf(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(e^{it}) dt,$$

where

$$P_r(\theta) = \Re\left(\frac{1+z}{1-z}\right) = \sum_{-\infty}^{\infty} r^{|n|} e^{in\theta}$$

is the Poisson kernel.

In terms of coordinates on the upper half-plane,

$$Pf(x+iy) = \frac{1}{\pi} \int_{-\infty}^{\infty} P_y(x-t)f(t)dt, \quad P_y(x) = \frac{y}{x^2 + y^2}.$$

The defining property of the Poisson transform is that it is $SL_2\mathbf{R}$ -invariant.

We know that $S^1 = SL_2\mathbf{R}/B = G/B$ and $\mathbf{H} = SL_2\mathbf{R}/SO_2 = G/K$. G-invariant functions $S^1 \to \mathbf{H}$ are given by

$$\operatorname{Fun}_G(G/B \times G/K) = \operatorname{Fun}(G \backslash G/B \times G/K) = \operatorname{Fun}(B \backslash G/K).$$

But this is a point, so there is a unique such transform. One has to check that the inverse transform $\mathbf{H} \to S^1$ is just a restriction to the boundary.

Hardy spaces H^p : $f \in L^p(\mathbf{R})$ such that Pf is holomorphic.

Why do we get something harmonic? Fun(G/B) is $C(SL_2\mathbf{R}/B)$, and the representation is in the principal series with s=0, so $\Delta=0$. In particular, it is automatically in $C^{\infty}(\mathbf{H})$.

There is a variant of the Poisson transform for any eigenvalue called the s-Poisson transform.

$$V_s \cong C(S^1) \to C^{\infty}(\mathbf{H})_{\Delta = -\frac{s}{2}(1+\frac{s}{2})}.$$

$$Pf(x+iy) = \frac{1}{\pi} \int_{-\infty}^{\infty} P_{1-s}(x-t)f(t)dt, \quad P_{1-s} = \left(\frac{y}{x^2+y^2}\right)^{1-s}.$$

 $f_s(x+iy) = y^{s/2}$ is an eigenfunction

$$\Delta_{\mathbf{H}} f_s = \frac{s}{2} \left(1 - \frac{s}{2} \right) f_s.$$

Any G-translate of f_s is also an eigenfunction.

$$\phi_s(z) = \int_K f_s(k \cdot z) dk$$

is a K-invariant eigenfunction of the Laplacian called the zonal spherical function. So, it is a Poisson transform of a spherical vector $V_s^K \cong \mathbf{C}$. Spherical function

$$\phi_s(g) = \langle v_0^*, gv_0 \rangle.$$

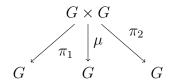
It is K-biinvariant, i.e. a function on $K \setminus G/K$. This is just $\mathbf{R}_{\geq 0}$. Let t be a coordinate on the ray, then the Laplacian takes the form

$$\Delta = -\partial_t^2 + \coth t \partial_t.$$

The eigenvalue equation is called the Legendre equation.

What are the G-symmetries of $L^2(G/K)$? These are the same as functions on $G\setminus (G/K\times G/K)=K\setminus G/K$. These are called Hecke algebras.

Consider the group algebra of G: the underlying vector space is $C_c(G)$. The multiplication is given by convolution:

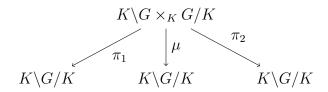


The convolution is then

$$(f * h)(g) = \int_{g_1g_2=g} f(g_1)h(g_2)dg.$$

Proposition. For $K \subset G$ a closed subgroup the Hecke algebra $\mathcal{H}(G, K) := C_c(K \setminus G/K) = {}^K C_c(G)^K$ is a subalgebra under *.

Proof. Consider the following diagram:



The multiplication here is well-defined, so the Hecke algebra is indeed a subalgebra. $\hfill\Box$

One can think of a group algebra as functions on $G \times G$ invariant under diagonal G.

On $G \times G$ we have a matrix multiplication given by the diagram

$$\begin{array}{c|c} G\times G\times G \\ \hline & \\ \pi_{12} & \\ \hline & \\ G\times G & G\times G \\ \end{array}$$

Then the group algebra is $C_c(G) = C_c(G \times G)^G$. Similarly,

$$C_c(G \setminus [G/K \times G/K]) \cong C_c(K \setminus G/K).$$

Hecke algebras are in general noncommutative.

In out case $G/K = \mathbf{H}$. Then $K \setminus G/K = SO_2 \setminus \mathbf{H} = \mathbf{R}_+$. This can also be seen from the Cartan decomposition: G = KAK.

Suppose $K = K(r) \in C_c(K \backslash G/K)$ and $f \in L^2(\mathbf{H})$. Then

$$(K * f)(z) = \int_r \int_{|z-w|=r} K(r)f(w)dw.$$

Theorem. $C_c(K\backslash G/K)$ is commutative. In this case (G,K) form a so-called Gelfand pair.

Proof. Gelfand trick: transpose $G \to G$ is an antiautomorphism, i.e. $(gh)^t = h^t g^t$.

This induces an antiautomorphism of $C_c(G)$. So, we also get an antiautomorphism of the subalgebra $C_c(K \setminus G/K)$. Double cosets $K \setminus G/K$ are represented by symmetric matrices $f, h \in C_c(K \setminus G/K)$. Then

$$f * h = (f * h)^t = h^t * f^t = h * f.$$

Therefore $Aut_G(L^2(\mathbf{H}))$ are commutative. Decompose into irreducibles:

$$V = \bigoplus V_i^{\bigoplus n_i}$$
.

By Schur's Lemma $\operatorname{Aut}_G V_i = \mathbf{C}^{\times}$ and $\operatorname{Aut}_G V_i^{\oplus n_i} \cong GL_{n_i}$. So, commutativity implies that n_i is either 0 or 1.

Decompose $L^2(G/K)$ as a module over $C_c(K\backslash G/K)$.

If A is the closure of $C_c(K\backslash G/K)$ in $B(L^2(G/K))$, it becomes a commutative C^* -algebra.

Theorem (Gelfand-Naimark). Commutative C^* -algebras are equivalent to locally-compact Hausdorff spaces.

For X a space, one has $A = C_c(X)$. For A a C^* -algebra, the space X consists of (continuous *-)homomorphisms $A \to \mathbb{C}$, i.e. maximal ideals of A or unitary irreps of A.

Each $x \in X = \operatorname{Spec} \overline{C_c(K \backslash G/K)}$ corresponds to $\phi_x \in L^{\infty}(K \backslash G/K)$. In fact, the functions are real analytic. These are precisely zonal spherical functions, i.e. matrix elements corresponding to spherical vectors in unitary irreps of G.

Theorem (Harish-Chandra). $L^2(\mathbf{H})$ has spectrum coinciding with unitary principal series. That is, characters of $C_c(K\backslash G/K)$ are given by $s \in i\mathbf{R} - 1$.

Suppose V is a representation of G. Given $K \subset G$, what acts on V^K ?

Proposition. $C_c(K \backslash G/K)$ preserves V^K .

Proof. For simplicity, assume G, K are finite. Then

$$\mathcal{H} = C(K \setminus G/K) = C(G \setminus [G/K \times G/K]) = \operatorname{End}_G(C(G/K)).$$

The space of functions C(G/K) is the same as $\operatorname{Ind}_K^G \mathbf{C}$, where K acts trivially on \mathbf{C} . Then

$$\operatorname{Hom}_G(\operatorname{Ind}_K^G \mathbf{C}, V) = \operatorname{Hom}_K(\mathbf{C}, V) = V^K.$$

Therefore \mathcal{H} acts by precomposition on $\operatorname{Hom}_G(C(G/K),V)=V^K$.

If K is big, then $K \setminus G/K$ is small, then \mathcal{H} is simple (e.g. commutative).

If K is small, many representations will have K-invariants.

Theorem. Irreducible representations of G with nontrivial K-invariants is in bijection with irreducible representations of the Hecke algebra.

More generally, there is an equivalence of categories between representations generated by K-invariants and representations of the Hecke algebra.

Discrete subgroups of $SL_2\mathbf{R}$. Let's look at discrete subgroups $\Gamma \subset SL_2\mathbf{R}$.

If X is a Riemann surface of g > 1. Then the universal cover of X is **H**, i.e. $X = \Gamma \backslash \mathbf{H}$.

 $PSL_2\mathbf{R}$ is the unit tangent bundle to \mathbf{H} , so $\Gamma \backslash PSL_2\mathbf{R}$ is the unit tangent bundle to X.

One also has many arithmetic subgroups. For example, one has $SL_2\mathbf{Z} \subset SL_2\mathbf{R}$. More generally, we have

$$\Gamma_0(N) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad c \equiv 0 \mod N \}.$$

 $H_{\Gamma} = L^2(\Gamma \backslash G)$ is a representation of $SL_2\mathbf{R}$. We get discrete series, unitary principal series, complementary series.

Date: 04/19

Last time we had several examples of discrete subgroups $\Gamma \subset SL_2\mathbf{R}$:

- Fundamental groups of compact Riemann surfaces of genus q > 1 (via the uniformization theorem). These groups are cocompact, i.e. $\Gamma \backslash SL_2\mathbf{R}$ is compact.
- Arithmetic subgroups: $\Gamma(N)$ and $\Gamma_0(N)$. These are not cocompact.

Consider the action of G on $L^2(\Gamma \backslash G)$, this is a unitary representation. If Γ is cocompact, the decomposition into irreducibles is a direct sum of:

- Principal series: Δ > ½
 Complementary series: 0 ≤ Δ ≤ ½
- Discrete series: $\Delta = -\frac{s}{2} \left(1 + \frac{s}{2}\right)$ for $s \in \mathbb{Z}$.

Assume $-id \in \Gamma$: for example, fundamental groups of Riemann surfaces are subgroups of $PSL_2\mathbf{R}$, so their lift to $SL_2\mathbf{R}$ contains – id. In this case only even representations occur.

Proposition. The multiplicity of V_s ($s \notin \mathbf{Z}$) is the dimension of $L^2(\Gamma \backslash G/K)_{\Delta=-\frac{s}{2}(1+\frac{s}{2})}$

Note, that $\Gamma \backslash G/K = \Gamma \backslash \mathbf{H}$. For Riemann surfaces this is just X = $\Gamma \backslash \mathbf{H}$.

One can write

$$X = \Gamma \backslash G/K = G \backslash [G/K \times G/\Gamma].$$

A function on X is the same as an intertwiner for functions on G/Kto functions on G/Γ .

Note, that $L^2(\Gamma \backslash G/K) = L^2(\Gamma \backslash G)^K$. So, we are looking for spherical vectors in $L^2(\Gamma \backslash G)$.

The principal series representations $(V_s)^K = \mathbf{C}v_0$. Now fix Δ eigenvalue to be $-\frac{s}{2}(1+\frac{s}{2})$ for $s \notin \mathbf{Z}$.

Since V_s contains a one-dimensional weight space for any even weight, instead of considering K-invariants, one can look at even eigenvalues.

Lifting of weight k. Consider C^{∞} functions on **H** as a G-representation, such that for any function f

$$(g \cdot f)(z) = \frac{1}{(cz+d)^k} f(g^{-1}z), \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

This is the same as looking at $f(z)dz^{k/2}$.

One can map this space to C^{∞} functions on G, with G acting on the left.

Recall the Iwasawa decomposition:

$$SL_2\mathbf{R} \ni g = \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix} \begin{pmatrix} y^{1/2} & \\ & y^{-1/2} \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = NAK.$$

The map is

$$f \mapsto F(g) = (g \cdot f)(i) = \frac{1}{(ci+d)^k} f(g^{-1} \cdot i)$$
$$= e^{ik\theta} y^{k/2} f(x+iy).$$

Note, that F has a property

$$F(g \cdot r(\theta)) = F(g)e^{ik\theta}.$$

where $r(\theta)$ is the rotation matrix.

The inverse map is given by

$$f(x+iy) = y^{-k/2} F \begin{pmatrix} y^{1/2} & xy^{-1/2} \\ & y^{-1/2} \end{pmatrix}$$
.

Here we are using that

$$NA \cong \mathbf{H}$$

$$dzy^{-1/2} \leftrightarrow dz$$

Denote $L^2(\Gamma \backslash G/K, k)$ the space of functions on $\Gamma \backslash G$, which have eigenvalue k with respect to K. Equivalently, these are k/2-forms on $\Gamma \backslash G/K$.

Lemma. The space $L^2(\Gamma \backslash G/K, k)$ is identified with

$$\{f \in C^{\infty}(G/K): f(z) = \frac{1}{(cz+d)^k} f(\gamma^{-1}z)\},$$

where
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$
.

For k even, the number of appearances of V_s in $L^2(\Gamma \backslash G)$ is the dimension of $L^2(\Gamma \backslash G/K, k)_{\Delta = -\frac{s}{2}(1+\frac{s}{2})}$.

Reference: Lang, $SL_2\mathbf{R}$, section VI.4.

Let's write in our coordinates x, y, θ vector fields on G coming from the right action in a basis of $\mathfrak{sl}_2 \mathbf{R} \otimes \mathbf{C} = \mathfrak{sl}_2 \mathbf{C} = \mathfrak{su}(1, 1) \otimes \mathbf{C}$.

Recall we had the following basis of $\mathfrak{su}(1,1)$:

$$H = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad X = \frac{1}{2} \begin{pmatrix} 1 & -i \\ -i & -1 \end{pmatrix}, \quad Y = \frac{1}{2} \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}.$$

We like this basis since $\exp(i\theta H) = r(\theta)$ is the rotation matrix. On our weight k lifts F, $r_H F = k F$.

The vector field corresponding to the right action of x is

$$r_X = -iye^{-2i\theta} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) + \frac{i}{2}e^{-2i\theta} \frac{\partial}{\partial \theta}$$
$$= -2iye^{-2i\theta} \frac{\partial}{\partial \overline{z}} + \frac{i}{2}e^{-2i\theta} \frac{\partial}{\partial \theta}.$$

Then

$$r_X F = r_x (e^{ik\theta} y^{k/2} f(x+iy))$$
$$= -iy^{k/2+1} e^{2i(k/2-1)\theta} \frac{\partial f}{\partial \overline{z}}.$$

So,

Corollary. f is holomorphic iff $r_X F = 0$.

So, any such F is a highest weight vector for the Lie algebra action of \mathfrak{g} on $C^{\infty}(G)$.

When we looked at the discrete series D_n^{\pm} , we defined them to be holomorphic sections on **H** of homogeneous line bundle $(dz)^{n/2}$.

Let's take $v_{-n} \in (D_n^-)^*$. Then the matrix element gives a function on the group:

$$D_n^- \to C^{\infty}(G)$$
$$v \mapsto \langle v, g \cdot v_{-n} \rangle.$$

Here we map to functions on G of weight n. Observe, that $Xv_{-n}=0$, i.e. v_{-n} is a highest weight vector. Therefore, we moreover land in functions on G, which are fixed by the vector field r_H . But then this space is isomorphic to holomorphic n/2-forms $fdz^{n/2}$ on \mathbf{H} .

Theorem (Gelfand-Graev, Piatetski-Shapiro). For Γ cocompact, $L^2(\Gamma \backslash G)$ is a direct sum of unitary principal and complementary series V_s with multiplicity dim $L^2(\Gamma \backslash \mathbf{H})_{\Delta = -\frac{s}{2}(1+\frac{s}{2})}$ and discrete series D_n^{\pm} with (equal) multiplicity $h^0(\Gamma \backslash \mathbf{H}, \omega^{n/2})$, i.e. the dimension of holomorphic n/2-forms on $X = \Gamma \backslash G$.

Modular forms. Now Γ is an arithmetic subgroup, e.g. $\Gamma = SL_2\mathbf{Z}, \Gamma_0(N), \Gamma(N)$.

- $SL_2\mathbf{Z}\backslash SL_2\mathbf{R}$ is the space of unimodular lattices $\Lambda\subset\mathbf{R}^2$.
- $\Gamma(N)\backslash SL_2\mathbf{R}$ is the space of unimodular lattices and a trivialization $\Lambda \mod N \cong (\mathbf{Z}/N)^{\oplus 2}$.
- $\Gamma(N)\backslash SL_2\mathbf{R}$ is the space of unimodular lattices and a line in Λ mod N.

 $SL_2\mathbf{Z}$ is generated by $T = \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix}$ and $S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. The fundamental domain is noncompact, want to compactify by adding a cusp.

 Γ naturally acts on $\mathbf{P}_{\mathbf{Z}}^1 = SL_2\mathbf{Z}/B_{\mathbf{Z}} = SL_2\mathbf{Q}/B_{\mathbf{Q}} = \mathbf{Q} \cup \infty$ with finitely many orbits, called cusps of Γ .

Modular curves $\Gamma \backslash \mathbf{H} \subset \Gamma \backslash (\mathbf{H} \cup \mathbf{P}^1_{\mathbf{Q}}) = X(N)$. The points that we add are called cusps.

Definition. A holomorphic) modular form of weight k for Γ is a holomorphic section $f \in H^0(X(\Gamma), \omega^k)$.

That is, f is a holomorphic function on \mathbf{H} , such that

$$f(\gamma z) = (cz + d)^k f(z),$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$. Moreover, it is holomorphic at cusps.

Observe, that $SL_2\mathbf{Z} \supset \langle \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \rangle \cong \mathbf{Z}$. So, any $SL_2\mathbf{Z}$ -modular form f obeys f(z) = f(z+1) and so one can write it in terms of $q = e^{2\pi iz}$. In terms of q the cusp is at q = 0. We can write

$$f(q) = \sum_{n \in \mathbf{Z}} a_n q^n.$$

If it is holomorphic at the cusp $q=0,\ a_n=0$ for $n<0.\ a_0$ turns out to be important.

Date: 04/24

Last time we looked at $\Gamma \subset SL_2\mathbf{Z} \subset SL_2\mathbf{R}$. We compactified

$$\Gamma \backslash SL_2\mathbf{R}/SO_2 = \Gamma \backslash \mathbf{H} \subset \Gamma \backslash \mathbf{H} \cup \mathbf{P}_{\mathbf{O}}^1$$

 Γ acts on $\mathbf{P}_{\mathbf{Q}}^1$ with finitely many orbits, "cusps" of Γ . Assume that the cusp $\gamma \in \mathbf{P}_{\mathbf{Q}}^1$ is $\gamma = \infty$ (via conjugation by $SL_2\mathbf{Z}$).

$$\Gamma_{\infty} = \operatorname{Stab}_{\Gamma}(\infty).$$

It consists of matrices of the form

$$\left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array}\right),\,$$

where $a, a^{-1} \in \mathbf{Z}$ and so $a = \pm 1$.

 $[\Gamma:\Gamma_{\infty}]$ is finite, so Γ_{∞} contains a matrix of the form

$$\left(\begin{array}{cc} 1 & n \\ 0 & 1 \end{array}\right).$$

Any Γ -invariant function of $z \in \mathbf{H}$ is a function of $q = e^{2\pi i z/n}$. Can expand

$$f(q) = \sum a_k q^k.$$

f is a holomorphic modular form iff $a_k = 0$ for k < 0.

Definition. f is a cusp form if f vanishes at the cusp (i.e. $a_0 = 0$).

f(x+iy): for x bounded

$$f \sim a_1 e^{-2\pi y/n} + a_2 e^{-4\pi y/n} + \dots$$

so a cusp form is exponentially decreasing in y.

So, if f is a cusp form,

$$F(q) = f(z)y^{k/2}e^{ik\theta} \in L^2(\Gamma \backslash G).$$

Cusp forms count appearances of discrete series representation D_k in $L^2(\Gamma \backslash G)$.

Maass forms: $f \in C^{\infty}(\Gamma \backslash \mathbf{H})$, which is a Δ -eigenfunction of eigenvalue $-\frac{s}{2}(1+\frac{s}{2})$ of moderate growth at cusps. Cusp form if f rapidly decreasing iff $F(g) \in L^2(\Gamma \backslash G)$, so they count appearance of V_s in $L^2(\Gamma \backslash G)$.

Horocycle correspondence. Consider $G/K = \mathbf{H}$. A horocycle is a circle through a point, which is tangent to the circle at infinity.

The space

$$H\{x \in \mathbf{H}, F \text{horocycle} | x \in F\}$$

has a map to $H \to G/K = \mathbf{H}$ by forgetting the horocycle. The horocycle is given uniquely by specifying a tangent line, so the fibers are projectivized tangent spaces. Moreover, one has H = G/M, where

$$M = \begin{pmatrix} \pm 1 \\ \pm 1 \end{pmatrix}.$$

On the other hand, we can forget the point, and so we have a map to the space of horocycles Ξ . It is isomorphic to G/MN.

Finally, we can forget the horocycle and remember the intersection with infinity; this gives a map $\Xi \to \mathbf{RP}^1 = G/B = G/MAN$.

The Poisson transform is the push-pull (integral) transform from \mathbf{RP}^1 to \mathbf{H} .

The space of functions on the space of horocycles Ξ is called the universal (spherical) principal series repersentation $L^2(G/MN)$. It has a left action of G and a right action of A.

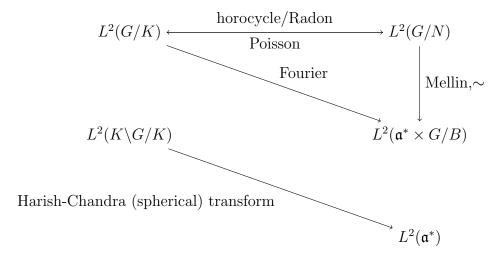
Mellin transform is the Fourier transform on \mathbf{R}_{+} :

$$f \mapsto \hat{f}(s) = \int_0^\infty f(t)t^s \frac{dt}{t}.$$

So, for $A \cong \mathbf{R}_+$, Mellin transform gives an isomorphism $L^2(A) \cong L^2(\mathfrak{a}^*)$.

$$L^{2}(G/N) \cong L^{2}(\mathfrak{a}^{*} \times G/B)$$
$$= L^{2}(\mathfrak{a}^{*}, L^{2}(G/B))$$

A picture of different transforms:



Fourier transform $L^2(G/K) \to L^2(\mathfrak{a}^* \times G/B)$ is the usual Fourier transform, where y^s play the role of exponents. It depends on the choice of the KAN decomposition, and so let N be the stabilizer of a cusp. Given $l \in G/B$ (cusp) and $s \in \mathfrak{a}^*$, we get a function " y_l^s ".

$$f \in L^2(G/K) \mapsto \mathbf{F}(f)s, l) = \int_{\mathbf{H}} f(z)y_l^s dz.$$

The Harish-Chandra transform is the Fourier transform for K-invariant functions. Recall, that the zonal spherical functions are

$$\phi_s(z) = \int_K y_l^s dl.$$

The transform is given by

$$HC: f \mapsto \tilde{f}(s) = \int_{\mathbf{H}} f(z)\phi_s(z)dz.$$

Reference: Gelfand-Grindkin-Graev.

Find a finite-dimensional representation V of G and a vector $v \in V$ with stabilizer K. $G \cdot v \cong G/K \subset V$.

For $\lambda \neq 0$ consider $G \cdot (\lambda \cdot v) \cong G/K$ and take the limit $\lambda \to 0$.

More precisely, consider $[v] \in \mathbf{P}(V)$ and look at $G \cdot [v] \subset \mathbf{P}(V)$. Take the closure $\overline{G \cdot [v]} \subset \mathbf{P}(V)$ and the preimage $\overline{G \cdot v} \subset V$.

Date: 04/26

Spherical harmonics. Recall, that $L^2(S^2 = SU_2/K) = \widehat{\bigoplus_l V_{2l}}$, even finite-dimensional representations of SU_2 or $SL_2\mathbf{C}$. This space is identified with the space H of harmonic polynomials on \mathbf{R}^3 : $\{p \mid \Delta p = 0\}$.

$$H \otimes \mathbf{C}[\mathbf{R}^3]^{SU_2} \cong \mathbf{C}[\mathbf{R}^3].$$

Now recall the picture of the adjoint quotient: $\mathfrak{sl}_2\mathbf{C} \to \mathfrak{h}/W$. For $\mathfrak{sl}_2\mathbf{R}$ we have the map

$$\begin{pmatrix} a & b \\ c & -a \end{pmatrix} \mapsto -a^2 - bc$$

The fiber over the origin is $N=\{a^2+bc=0\}\cong \{{\bf R}^2\backslash 0\}/\pm 1\cup 0$. Representatives are

$$\begin{pmatrix} 1 \end{pmatrix}, \begin{pmatrix} -1 \end{pmatrix}.$$

For $a^2 + bc < 0$ the fiber is $\mathbf{H} \cup \mathbf{H}^-$, i.e. $G/K \cup G/K$, this is the elliptic conjugacy class. Representatives are

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

For $a^2 + bc > 0$ the fiber is a hyperboloid (split/hyperbolic conjugacy class). This is $G/MA \cong \mathbf{RP}^1 \times \mathbf{RP}^1 \setminus \Delta$.

The representative is

$$\begin{pmatrix} a \\ -a \end{pmatrix}$$
.

Similar to the transform we had in the SU_2 case, here we have a transform

$$C^{\infty}(G/H) \to C^{\infty}(G/MN).$$

Eisenstein series. Last time we looked at cusp forms: forms on $\Gamma \backslash \mathbf{H}$, which vanish at cusps.

Definition. Automorphic form for Γ : $\mathcal{A}(\Gamma \backslash G)$, which are smooth, K-finite and Z-finite (here $Z = Z(U\mathfrak{g}) = \mathbf{C}[C]$) of moderate growth near every cusp: $|f(g)| \leq Cy(g)^N$.

Let's fix a cusp, i.e. a Γ -orbit on $\mathbf{P}_{\mathbf{Z}}^1$. The stabilizer is $\Gamma_{\infty} = \Gamma \cap B$, where B is the stabilizer of $l \in \mathbf{RP}^1$ in $SL_2\mathbf{R}$. Explicitly,

$$\Gamma_{\infty} = \left\{ \left(\begin{array}{cc} \pm 1 & n \\ & \pm 1 \end{array} \right) \right\} \subset MN.$$

Note, that $N\Gamma_{\infty}\backslash G = MN\backslash G = (\mathbf{R}^2\backslash 0)/\pm 1$.

Consider the map $\Gamma_{\infty}\backslash G \to \Gamma\backslash G$. The fibers are Γ/Γ_{∞} , i.e. a Γ -orbit of the cusp in $\mathbf{P}^1_{\mathbf{Z}}$. In the $SL_2(\mathbf{Z})$ case this is just $\mathbf{P}^1_{\mathbf{Z}}$.

Now we have the following integral transforms

$$\mathcal{A}(\Gamma \backslash G) \overset{E}{\underset{C}{\longleftrightarrow}} \mathcal{A}(N\Gamma_{\infty} \backslash G),$$

where E is the so-called Eisenstein series and C is the constant term.

$$C(f)(g) = \int_{\Gamma_{\infty}|backslashN} f(n \cdot g) dn.$$

For example, for modular forms one gets

$$C(\sum a_n q^n) = a_0.$$

One can also define the Whittaker functional

$$W(f)(g) = \int_{\Gamma_{\infty} \backslash N} f(ng)e^{-i\pi n} dn = a_1.$$

The Eisenstein operator is

$$E(\phi)(g) = \sum_{\Gamma_{\infty} \backslash \Gamma} \phi(\gamma g) = \sum_{(c,d) \in \mathbf{Z}^2 \backslash 0 \text{ rel prime}} \phi(\gamma_{c,d} g).$$

One can think of the Eisenstein operator as E = E(f, s), where $f \in C^{\infty}(G/B)$ and $s \in \mathbb{C}$ via the Mellin transform: $G/MN \hookrightarrow \mathfrak{a}^* \times G/B$.

Theorem. E(f,s) is absolutely convergent for $\Re s \gg 0$. Moreover, E(f,s) is holomorphic in s and has an analytic continuation as a meromorphic function.

If we decompose q = nyk via the G = NAK decomposition, then

$$E(f,s) = \sum_{(c,d)=1} y(\gamma g)^s f(K(\gamma g)).$$

Using

$$\Im(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\cdot z)=\frac{\Im z}{|cz+d|^2},$$

one obtains

$$E(1,s) = \sum_{(c,d)=1} \frac{y^s}{|cz+d|^{2s}}.$$

Instead of summing over $\mathbf{P}_{\mathbf{Z}}^{1},$ one can sum over $\mathbf{Z}^{2}\backslash0$:

$$\tilde{E} = \sum_{c,d \in \mathbf{Z}^2 \setminus 0} \frac{y^s}{|cz+d|^{2s}} = \sum_{n>0} \sum_{(c,d)=1} \frac{y^s}{|cz+d|^{2s}} \frac{1}{n^{2s}} = \zeta(2s) E(f,s).$$

If we take $\chi_k = e^{2\pi i k}$, one can compute

$$\tilde{E}(\chi_k, s) = \sum_{\mathbf{Z}^2 \setminus 0} \frac{y^s}{|cz + d|^{2s}} \frac{1}{(cz + d)^k}.$$

At s = 0 one gets

$$\sum_{\mathbf{Z}^2 \setminus 0} \frac{1}{(cz+d)^k}.$$

Date: 05/01

Eisenstein series.

$$C^{\infty}(\Gamma \backslash G) \stackrel{C}{\underset{E}{\longleftrightarrow}} C^{\infty}(MN \backslash G).$$

C, E are adjoint operators. Therefore, $\Im(E) \perp \operatorname{Ker}(C)$. Here $\operatorname{Ker}(C)$ consists of cusp forms.

Indeed,

$$\int_{\Gamma \setminus G} E(f, s) \phi(g) dg = \int_{\Gamma \setminus G} \left(\sum_{\Gamma_{\infty} \setminus \Gamma} f_s(\gamma g) \right) \phi(g) dg$$

$$= \int_{\Gamma_{\infty} \setminus G} f_s(g) \phi(g) dg$$

$$= \int_{N_2 \setminus G} f_s(g) \left(\int_{\Gamma_{\infty} \setminus N} \phi(ng) dn \right) dg$$

We have a decomposition

$$L^2(\Gamma \backslash G) \cong \mathbf{C} \oplus L^2_{cusp} \oplus L^2_{cont},$$

where L_{cusp}^2 contains modular and Maass forms, and L_{cont}^2 is the image of Eisenstein series.

What is the constant term of Eisenstein series?

 $SL_2\mathbf{Z}$ case:

$$\Gamma_{\infty}\backslash\Gamma = \mathbf{P}_{\mathbf{Z}}^{1} = \left\{ \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} \cup \begin{pmatrix} & -1 \\ 1 & \end{pmatrix} \cdot \begin{pmatrix} 1 & n \\ & 1 \end{pmatrix} \right\}/B.$$

Let's compute the composition CE for a function f on $MN\backslash G$:

$$CE(f)(g) = \int_{\Gamma_{\infty} \backslash N} E(f) \left(\begin{pmatrix} 1 & n \\ & 1 \end{pmatrix} g \right) dn$$

$$= \int_{\gamma_{\infty} \backslash N} \sum_{\mathbf{P_{\mathbf{Z}}^{1}}} f \left(\gamma \begin{pmatrix} 1 & n \\ & 1 \end{pmatrix} g \right) dn$$

$$= f(g) + \int_{\Gamma \backslash N} \sum_{\alpha \in \mathbf{Z}} f \left(w_{0} \begin{pmatrix} 1 & n + \alpha \\ & 1 \end{pmatrix} g \right) dn$$

$$= f(g) + \int_{N} f \left(w_{0} \begin{pmatrix} 1 & n \\ & 1 \end{pmatrix} g \right) dn$$

$$= f(g) + I(f)(g).$$

Here I is the intertwiner $I: V_s \to V_{-2-s}$.

Corollary (Functional equation). E(f,s) = E(If, -s - 2).

$$SL_2(\mathbf{Q}_p)$$

 $\mathcal{O} = \mathbf{Z}_p$ is the ring of *p*-adic integers. Its fraction field is $\mathcal{K} = \mathbf{Q}_p$, *p*-adic numbers. Here \mathbf{Z}_p is the completion of \mathbf{Z} at the prime ideal (p). These are Taylor (Laurent) series in p. So,

$$\mathbf{Q}_p = \{ \sum_{i=-N}^{\infty} a_i p^i \},$$

where $a_i = 0, ..., p - 1$.

 \mathbf{Z}_p is the closed unit disk in \mathbf{Q}_p .

Definition. A function $f: \mathbf{Q}_p \to \mathbf{C}$ is smooth if it is continuous for the discrete topology on \mathbf{C} .

Equivalently, f is locally-constant: $\forall x \in \mathbf{Q}_p, \forall a \ f(x) = f(x + p^N a)$ for $N \gg 0$.

On \mathbf{Z}_p a smooth function is the same as a $p^N \mathbf{Z}_p$ -invariant function for $N \gg 0$.

This space is denoted by $C^{\infty}(\mathbf{Q}_p)$.

Consider the chain

$$\mathbf{Q}_p/\mathbf{Z}_p\subset\mathbf{Q}/\mathbf{Z}\subset\mathbf{R}/\mathbf{Z}.$$

Here \mathbf{R}/\mathbf{Z} is a circle, \mathbf{Q}/\mathbf{Z} consists of torsion and $\mathbf{Q}_p/\mathbf{Z}_p$ consists of p-torsion.

$$GL_1(\mathbf{Q}_p) = \mathbf{Q}_p^{\times} = \langle p \rangle \times \mathbf{Z}_p^{\times} \cong \mathbf{Z} \times \mathbf{Z}_p^{\times}.$$

A smooth character is a continuous map $GL_1(\mathbf{Q}_p) \to \mathbf{C}^{\times} \subset \mathbf{C}$. Unramified characters: the ones that factor through $\mathbf{Q}_p^{\times}/\mathbf{Z}_p^{\times}$:

$$\mathbf{Q}_n^{ imes} o \mathbf{Q}_n^{ imes}/\mathbf{Z}_n^{ imes} o \mathbf{C}^{ imes}.$$

Since $\mathbf{Q}_p^{\times}/\mathbf{Z}_p^{\times} \cong \mathbf{Z}$ these are parametrized by $s \in \mathbf{C}^{\times}$. Explicitly,

$$p^{-N}(a_0 + a_1p + ...) \mapsto s^{-N}$$
.

$$G = SL_2\mathbf{Q}_p \supset SL_2\mathbf{Z}_p = K.$$

It turns out K is the maximal compact subgroup.

There is a unique Haar measure on G with vol(K) = 1.

Consider a subgroup $K_n \subset G$:

$$K_N = \{g \in SL_2 \mathbf{Z}_p : g \cong \mathrm{id}(p^N)\}.$$

These subgroups are compact and open.

Definition. A smooth representation of G is $\pi: G \to GL(V)$, which is continuous in the discrete topology on GL(V).

Equivalently, all matrix elements are smooth. In other words, $\forall v \in V$ there is an N, such that $K_N \cdot v = v$. One can write

$$V = \cup_N V^{K_N}.$$

 V^{K_N} is a module for $C_c^{\infty}(K_N\backslash G/K_N)$ known as the Hecke algebra of level N.

The group algebra in the p-adic case is $C_c^{\infty}(G)$ (sometimes called "the" Hecke algebra). If V is a smooth representation, it is a $C_c^{\infty}(G)$ -module

For H compact subgroup in G, the Hecke algebra $\mathcal{H}(G,H)=C_c^\infty(H\backslash G/H)$ acts on V^H .

If V is irreducible and $V^{K_n} \neq 0$ for some N. Then $V = GV^{K_N}$. So, V is completely determined by V^{K_N} as a $\mathcal{H}(G, K_N)$ -module.

Definition. An irreducible representation V is unramified if $V^K \neq 0$, where $K = SL_2\mathbf{Z}_p$.

For reducible representations V should be generated by V^K .

Unramified principal series.

$$G \supset G \supset T$$
.

Here

$$T = \left\{ \left(\begin{array}{c} a \\ & a^{-1} \end{array} \right) \mid \quad a \in \mathbf{Q}_p^{\times} \right\} \cong \mathbf{Z} \times \mathbf{Z}_p^{\times}.$$

If we pick $s \in \mathbb{C}^{\times}$, then we have a character

$$T \xrightarrow{\chi_s} \mathbf{C}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{Z} = T(\mathcal{K})/T(\mathcal{O})$$

$$V_s = \operatorname{Ind}_B^G \chi_s = \{ f \in C^{\infty}(G) | f(ntf) = \chi_s(t)f(g), n \in N(\mathcal{K}), t \in T(\mathcal{K}) \}.$$

Date: 05/03

Tree for $SL_2\mathbf{Q}_p$. This is an analog of \mathbf{H} . Let $E = \mathbf{Q}_p^2$.

Definition. $L \subset E$ is a lattice if L is a finitely-generated \mathbb{Z}_p -submodule, generating E, i.e. $E = L \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$.

Note, that $L \cong \mathbb{Z}_p^2$ as a \mathbb{Z}_p -module.

Parametrize lattices up to homothety (rescaling by \mathbf{Q}_{p}^{\times}).

Let's make a collection of lattices into a graph: vertices are lattices up to homothety; there is an edge between L_1 and L_2 if $L_1 \subset L_2$ if $L_2/L_1 \cong \mathbf{Z}/p\mathbf{Z}$.

Note, that the relation is actually symmetric (up to scale): $L_2 \supset L_1 \supset pL_2$. This is a (p+1)-regular tree. To see that it is a tree, use a distance function $d(L_1, L_2)$ is the length of L_1/L_2 (arrange $L_2 \subset L_1$ by rescaling).

$$L_1/L_2 \cong \mathbf{Z}/p^{d(l_1,l_2)\mathbf{Z}}$$

The space of all lattices carries a transitive action of $GL_2\mathbf{Q}_p$, which factors through $PGL_2\mathbf{Q}_p$ since we mod out by rescalings. The stabilizer of the basepoint is $PGL_2\mathbf{Z}_p$. So, the tree is in bijection with $PGL_2\mathbf{Q}_p/PGL_2\mathbf{Z}_p$.

Recall, that $PGL_2\mathbf{Z}_p$ is the maximal compact subgroup of $PGL_2\mathbf{Q}_p$; so, it is an analog of $SL_2\mathbf{R}/SO_2 \cong \mathbf{H}$.

On the other hand, there are two orbits of $SL_2\mathbf{Q}_p \to PGL_2\mathbf{Q}_p$: $SL_2\mathbf{Q}_p$ does not connect lattices of distance 1.

Let's call X the ends of the tree. It is a collection of infinite paths (without backtracking) modulo an equivalence relation that they eventually agree.

Ends are in bijection with $\varprojlim \mathbf{P}^1(\mathbf{Z}/p^n\mathbf{Z}) = \mathbf{P}^1(\mathbf{Z}_p)$. This is also isomorphic to $\mathbf{P}^1(\mathbf{Q}_p)$. In particular, it carries an action of $PGL_2\mathbf{Q}_p$ since $\mathbf{P}^1(\mathbf{Q}_p) \cong PGL_2\mathbf{Q}_p/B$.

The torus $T(\mathbf{Q}_p)$ consists of matrices preserving the decomposition $E = E_1 \oplus E_2$. So, it preserves the standard path of lattices $\langle e_1, p^n e_2 \rangle$. Moreover, T preserves distance to l orbits.

Now let's look at $N(\mathbf{Q}_p) \cong \mathbf{Q}_p$. It preserves a unique \mathbf{Q}_p -line $W \subset E$. So, it preserves a unique end of X. Moreover, it preserves a relative distance to the end: distance from p to W is a \mathbf{Z} -torsor.

N is normalized by T. T acts on the collection of horocycles (N-orbits) through $T(\mathbf{Q}_p)/T(\mathbf{Z}_p) \cong \mathbf{Z}$.

Recall, that in the **H** case we had a space of horocycles $SL_2\mathbf{R}/MN$. Principal series were functions with fixed homogeneity with respect to $\mathbf{R}_+ = A$.

Horocycles in X are $PGL_2\mathbf{Q}_p/N(\mathbf{Q}_p)T(\mathbf{Z}_p)$. This space has a right action of $T(\mathbf{Q}_p)/T(\mathbf{Z}_p) \cong \mathbf{Z}$. The quotient is $PGL_2\mathbf{Q}_p/B = \mathbf{P}^1(\mathbf{Q}_p)$.

Unramified characters are parametrized by

$$s \in \mathbf{C}^{\times} = \operatorname{Hom}(T(\mathbf{Q}_p)/T(\mathbf{Z}_p), \mathbf{C}^{\times}).$$

The principal series are

$$V_s = \operatorname{Ind}_B^G \mathbf{C}_s = \{ f : G \to \mathbf{C} | f(gtn) = \chi_s(t)f(g) \}$$

= {smooth functions f on $SL_2\mathbf{Q}_p/N(\mathbf{Q}_p)T(\mathbf{Z}_p)$ homogeneous of degree s wrt $\mathbf{Z} = T(\mathbf{Q}_p)/T$

Finally, $PGL_2\mathbf{Z}_p$ preserves the distance from L_0 . So,

$$PGL_2\mathbf{Z}_p\backslash PGL_2\mathbf{Q}_p/PGL_2\mathbf{Z}_p\cong\mathbf{N}.$$

Iwahori subgroup: $I \subset PGL_2\mathbf{Q}_p$, stabilizer of an edge. Explicitly,

$$I = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad c \equiv 0 \mod p.$$

Hecke algebras: fix K_N compact subgroup $PGL_2\mathbf{Q}_p$. $C_c^{\infty}(K_n\backslash PGL_2\mathbf{Q}_p/K_N)$ acts on V^{K_N} .

Spherical hecke algebra is

$$H_{sph} = C_c^{\infty}(K \backslash G/K),$$

where $K = PGL_2(\mathbf{Z}_p)$ is the maximal compact in $G = PGL_2\mathbf{Q}_p$. The algebra is spanned by T_{p^n} : constant function on $d(L_0, L) = n$. T_{p^n} corresponds to the double coset of

$$K\begin{pmatrix} 1 \\ p^n \end{pmatrix} K.$$

$$(T_{p^n} * f)(x) = \sum_{d(x,y)=n} f(y),$$

where $f \in C^{\infty}(X) = C^{\infty}(G/K)$.

$$T_p T_{p^n} = T_{p^{n+1}} + p T_{p^n - 1}.$$

One can write

$$\sum_{0}^{\infty} T_{p^n} \lambda^n = \frac{1}{1 - T_p \lambda + p \lambda^2}.$$

(G, K) is a Gelfand pair, so $\mathcal{H}(G, K)$ is commutative.

Theorem (Satake isomorphism). $\mathcal{H}_{sph} = \mathbf{C}[T_p] \cong \operatorname{Rep} SL_2\mathbf{C}$.

Last time we looked at the Satake isomorphism. Let $G = PSL_2\mathbf{Q}_p$ and $K = PSL_2\mathbf{Z}_p$ is the maximal compact subgroups. Then the spherical Hecke algebra is

$$H_p^{sph} = C_c^{\infty}(K \backslash G/K),$$

moreover, it is commutative.

Theorem. Unramified G-reps are equivalent to modules over H^{sph} by taking K-invariants.

In particular, G-irreps go to irreps of H^{sph} . But H^{sph} is commutative, so we get something 1-dimensional.

Theorem (Satake isomorphism). $H_p^{sph} \cong \mathbf{C}[T_p]$.

So, the irreps are classified by λ , i.e. let $T_p v_{\lambda} = \lambda v_{\lambda}$, then v_{λ} spans $V_{\lambda} = \mathbf{C}v_{\lambda}$.

Idea of the proof of Satake isomorphism: realize all representations in unramified principal series V_s for $s \in \mathbb{C}^{\times}$, the character of $T(\mathcal{K})/T(\mathcal{O}) \cong \mathbf{Z} \to \mathbb{C}^{\times}$.

 V_s^K is one-dimensional. We have a map

$$H^{sph} \to \mathbf{C}[\mathbf{C}^{\times}]$$
 $T \mapsto T(s) = T$ -eigenvalue on V_s^K .

This is not an isomorphism, since we have intertwiners between s and 1/s. So, get

$$H^{sph} \cong \mathbf{C}[\mathbf{C}^{\times}]^{\mathbf{Z}_2} \cong \operatorname{Rep} SL_2\mathbf{C}.$$

Similarly,

$$H^{sph}_{SL_2\mathbf{Q}_p} \cong \operatorname{Rep} PSL_2\mathbf{C}.$$

In general,

Theorem (Satake isomorphism). $C_c^{\infty}(G(\mathbf{Q}_p)\backslash G(\mathbf{Q}_p)/G(\mathbf{Z}_p)) \cong \operatorname{Rep}^L G_{\mathbf{C}}$.

Here ${}^LG_{\mathbf{C}}$ is the Langlands dual group to the *complex* group $G_{\mathbf{C}}$.

For real groups: any irreudcible admissible representation is realized inside principal series.

For p-adic groups: most are not inside of principal series. These are called supercuspidals.

How it all relates to modular forms. What are the symmetries of $C^{\infty}(\Gamma \backslash \mathbf{H})$?

- It has an action of $\Delta_{\mathbf{H}}$, Casimir of \mathfrak{sl}_2 . $\Gamma \backslash SL_2\mathbf{R}$ has an $SL_2\mathbf{R}$ action and so the center $\mathbf{C}[\Delta_{\mathbf{H}}] = Z(U\mathfrak{g})$ acts on the quotient $\Gamma \backslash SL_2\mathbf{R}/SO_2$.
- Action of $C_c^{\infty}(SO_2\backslash SL_2\mathbf{R}/SO_2)$ on $C^{\infty}(\Gamma\backslash SL_2\mathbf{R}/SO_2)$ again coming from the $SL_2\mathbf{R}$ action on $\Gamma\backslash SL_2\mathbf{R}$.

There are many more symmetries if Γ is arithmetic: $SL_2\mathbf{Z}$, $\Gamma(N)$, $\Gamma_0(N)$. Recall, the following identifications:

- $SL_2\mathbf{Z}\backslash SL_2\mathbf{R}$ parametrizes unimodular lattices $\Lambda\subset\mathbf{R}^2$.s
- $SL_2\mathbf{Z}\backslash SL_2\mathbf{R}/SO_2$ parametrizes unimodular lattices up to rotation (moduli space of elliptic curves).
- $\Gamma(N)\backslash SL_2\mathbf{R}/SO_2$ parametrizes unimodular lattices up to rotation and a trivialization $\Lambda \equiv (\mathbf{Z}/N\mathbf{Z})^2 \mod N$.

For any p not dividing N we have correspondences

Here

$$\operatorname{Hecke}_p = \{ \Lambda_1 \subset \Lambda_2, \quad \Lambda_2/\Lambda_1 \cong \mathbf{Z}/p\mathbf{Z} \}.$$

So, we get an operator T_p acting on $C^{\infty}(\Gamma \backslash \mathbf{H})$. These all commute for different p.

So, we get an action of

$$\bigotimes_{p\nmid N} H_p^{sph} \cong \mathbf{C}[T_p, \ldots].$$

Let Γ be an arithmetic subgroup.

Theorem (Strong approximation theorem).

$$\Gamma \backslash SL_2\mathbf{R}/SO_2 \cong SL_2\mathbf{Q} \backslash \prod_p' SL_2\mathbf{Q}_p \times SL_2\mathbf{R} / \prod_{p \nmid N} SL_2\mathbf{Z}_p \times \prod_{p \mid N} K_p \times SO_2.$$

Here \prod' means that all but finitely many factors are in $SL_2\mathbf{Z}_p$. $K_p \subset SL_2\mathbf{Z}_p$ are some subgroups of $SL_2\mathbf{Z}_p$.

One can also write it as

$$SL_2\mathbf{Q}\setminus\prod_{p\nmid N}'X_p\times\mathbf{H}\times\prod_{p\mid N}SL_2\mathbf{Q}_p/K_p.$$

For $\Gamma = SL_2\mathbf{Z}$ one can write it as

$$SL_2\mathbf{Q}\backslash SL_2\mathbf{A}/SL_2\mathcal{O}_{\mathbf{A}}$$
.

Here

$$\mathbf{A} = \prod' \mathbf{Q}_p imes \mathbf{R}$$

is the adeles. The ring of integers is $\mathcal{O}_{\mathbf{A}} = \prod_{p} \mathbf{Z}_{p}$. Note, that $\mathbf{Z} \hookrightarrow \mathcal{O}_{\mathbf{A}} \times \mathbf{R}$. In particular, $\mathbf{Z} \hookrightarrow \mathcal{O}_{\mathbf{A}}$ is dense:

$$\mathcal{O}_{\mathbf{A}} = \prod \mathbf{Z}_p = \hat{\mathbf{Z}} = \varprojlim \mathbf{Z}/N\mathbf{Z}.$$

So, we see that $C^{\infty}(\Gamma \backslash \mathbf{H})$ has symmetries coming from $C^{\infty}(SL_2\mathbf{Q} \backslash \prod' SL_2\mathbf{Q}_p \times SL_2\mathbf{R})$, which is a representation of $SL_2\mathbf{Q}_p$ and $SL_2\mathbf{R}$. Take an irreducible subrep $V^{irrep} \cong \otimes_{p,\infty} V_p$.

Theorem. V_p is unramified for all but finitely many p.

Recall that $C^{\infty}(\Gamma \backslash \mathbf{H})_{\Delta_{\mathbf{H}} = -\frac{s}{2}(1+\frac{s}{2})}$ gave us principal series in $\Gamma \backslash SL_2\mathbf{R}$. $H^0(\Gamma \backslash \mathbf{H}, \omega^k)$ gave us discrete series D_k in $\Gamma \backslash SL_2\mathbf{R}$.

We can look at special elements (eigenforms) $f \in \otimes_p V_p^{SL_2 \mathbf{Z}_p}$, which are diagonal for the action of the Hecke algebra:

$$T_p f = a_p f.$$

Recall, that we can write

$$f = \sum_{n=0}^{\infty} a_n q^n.$$

A cusp form has $a_0 = 0$. Furthermore, we can normalize $a_1 = 1$.

Claim: coefficients of the Fourier expansion of the eigenform coincide with the eigenvalues of the Hecke operators.

Remark: this is true for $SL_2\mathbf{Z}$, for other Γ one can get Fourier coefficients from the eigenvalues.

Question: which a_p occur?

Equivalently, which representations of $\prod SL_2\mathbf{Q}_p \times SL_2\mathbf{R}$ occur in the quotient?

<u>Langlands conjecture</u>: the answer is given in terms of Galois representations $\rho: \operatorname{Gal}(\overline{\overline{\mathbf{Q}}}/\mathbf{Q}) \to PSL_2\mathbf{C} =^L G_{\mathbf{C}}$.

Given ρ , a 2-dimensional representation of $\operatorname{Gal}_{\mathbf{Q}}$, get a list of numbers $\lambda \in \mathbf{C}$, in fact appear as semisimple conjugacy classes in $PSL_2\mathbf{C}$.

For all but finitely many p get $\rho(\operatorname{Frob}_p) \in PSL_2\mathbb{C}$, a well-defined conjugacy class.

Langlands: representation theory of $SL_2\mathbf{A}$ acting on $L^2(SL_2\mathbf{Q}\backslash SL_2\mathbf{A})$ coincides with 2d representations of $Gal_{\mathbf{Q}}$.