The 2-lien of a 2-gerbe

Prabhu Venkataraman

April 11, 2008

Motivation

Let G be a sheaf of groups on a space X.

- If G is abelian, what do $H^2(X,G)$, $H^3(X,G)$, and generally $H^n(X,G)$ classify?
- How do we define $H^n(X,G)$ when G is nonabelian?

Giraud answered this for $H^2(X,G)$ and Breen gave a partial solution for $H^3(X,G)$.

Gerbes and their Liens

- **Definition.** A (1)-**gerbe** on a space X is a stack in groupoids \mathcal{G} on X which is locally non-empty and locally connected.
 - A morphism of gerbes is just a morphism of the underlying fibered categories.
 - A gerbe \mathcal{G} on X is said to be **neutral** (or trivial) when the fiber category \mathcal{G}_X is non-empty.

A **lien on a space** X is a collection of sheaves of groups (G_i) corresponding to an open cover (U_i) of X with descent data up to inner conjugation.

In other words a lien on X is an object which is defined locally by a sheaf of groups, but in a category where morphisms between groups differing by inner conjugation are identified.

To every gerbe G on X, we can associate a lien on X, and this association is functorial in G.

Definition. Let K be a lien on X. A **gerbe** with lien K is a gerbe G on X together with an isomorphism of liens θ : $lien(G) \simeq K$. Two gerbes with lien K are said to be equivalent if there is an equivalence between the underlying fibered categories. We designate by $\mathbf{H}^2(\mathbf{X}, \mathbf{K})$ the set of equivalence classes of gerbes with lien K.

Example Let G be a bundle of groups on X. The stack Tors(G) of right G-torsors on X is a gerbe on X. It is (globally) non-empty since its fiber on X always contains the trivial G-torsor on X. It is also locally connected since any G-torsor is locally isomorphic to the trivial G-torsor. Thus Tors(G) is in fact a neutral gerbe. Its lien is the lien represented by the group G, denoted lien(G).

Example Let $1 \to A \to C \to B \to 1$ be an exact sequence of (possible infinite dimensional) Lie groups such that the projection $C \to B$ is a locally trivial A-bundle. Let $p: P \to X$ be a smooth B-bundle over a manifold X. Consider the problem of finding a C-bundle $q: Q \to X$ such that the associated B-bundle $Q/A \to X$ is isomorphic to $P \to X$. The fibered category of local solutions to this is a gerbe on X. The lien associated to this gerbe is isomorphic to the sheaf A_X of smooth A-valued functions.

2-Gerbes

Definition. A (2)-gerbe \mathcal{P} on a space X is a 2-stack in 2-groupoids on X which is locally non-empty, locally connected, in which 1-arrows are weakly invertible, and 2-arrows are invertible.

Example (**Breen**) Let L be a lien on X. When is L isomorphic to a lien of the form lien(G) for some gerbe G on X? Locally, always! since the lien L is locally isomorphic to a lien of the form lien(G) for some sheaf of groups G, whence it is realized by the neutral gerbe Tors(G) corresponding to G. Globally this gives a 2-gerbe on X.

The Project

We defined the notion of a 2-lien on a space X.

We have proved some theorems about 2-liens of 2-gerbes which correspond to well known results about liens of gerbes.

[Deligne] Any strict Picard stack \mathcal{G} corresponds to a 2-term complex of abelian sheaves $K^{\cdot} = [K^0 \xrightarrow{d} K^1]$. In this case we proved that $\check{H}^3(X,\mathcal{G})$ is isomorphic to the hypercohomology group $\check{H}^3(X,K^{\cdot})$.

The Coequalizer

Definition. Let C be a category and $f,g:A \to B$ be two arrows in C. The **coequalizer** of f and g is a pair (P,h) consisting of an object P of C with an arrow $h:B \to P$ such that (1) hf = hg; (2) if (D,u) is any other pair such that $u:B \to D$ has uf = ug, then u = u'h for a unique arrow $u':P \to D$.

If $F: G \times A \to A$ is the action of a group G on a set A then the quotient by the action is just the coequalizer of the arrows $G \times A \xrightarrow{p_2} A$. It is this formulation of quotients which lends itself to generalization i.e. we use this approach to define a quotient when a group category acts on a category.

Definition. Let \mathcal{C} and \mathcal{D} be categories, and let F and G denote functors from \mathcal{C} to \mathcal{D} i.e. we have a diagram $\mathcal{C} \xrightarrow{F} \mathcal{D}$. The coequalizer of F and G is a category Coeq(F,G) along with an essentially surjective functor $h:\mathcal{D} \to Coeq(F,G)$ such that $h \circ F \simeq h \circ G$. Further if Z is any other category with a fully faithful functor $j:D\to Z$ with $j \circ F \simeq j \circ G$ then there exists a functor $k:Z\to Coeq(F,G)$ (which is unique up to isomorphism), and a 2-isomorphism α (which is unique once k is fixed), sitting in a commutative diagram:

$$\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{j} Z \xrightarrow{k} Coeq(F,G)$$

Let $\mathcal C$ and $\mathcal D$ be categories, and let F and G denote functors from $\mathcal C$ to $\mathcal D$ i.e. we have a diagram $\mathcal C \overset{F}{\longrightarrow} \mathcal D$. We wish to prove coequalizers exist.

The objects of Coeq(F,G) will be objects of \mathcal{D} .

Let PreAr(F,G) denote the set of formal compositions of

- 1. $Ar(\mathcal{D})$
- 2. isomorphisms $F(x) \xrightarrow{\sim} G(x)$ for all $x \in \mathcal{C}$ and their inverses.

Then there is a smallest equivalence relation \sim on PreAr(F,G) such that

- 1. the identity axiom holds (i.e. $id \circ \alpha = \alpha$ and $\gamma \circ id = \gamma$ for any arrows α and γ),
- 2. formal composition of arrows in $Ar(\mathcal{D})$ are related to the actual compositions.
- 3. for any $a, b \in Ob(\mathcal{C})$ and $t: a \to b$ in $Ar(\mathcal{C})$ $F(a) \xrightarrow{F(t)} F(b) \xrightarrow{\sim} G(b) \sim F(a) \xrightarrow{\sim} G(a) \xrightarrow{G(t)} G(b).$

Further, if α_1 , α_2 and β_1 , β_2 are elements of PreAr(F,G) such that $\alpha_1 \sim \beta_1$ and $\alpha_2 \sim \beta_2$ and suppose $\alpha_2 \circ \alpha_1$ and $\beta_2 \circ \beta_1$ is defined, then $\alpha_2 \circ \alpha_1 \sim \beta_2 \circ \beta_1$.

Define Coeq(F,G) as follows: $Ob(Coeq(F,G)) = Ob(\mathcal{D})$ and $Ar(Coeq(F,G)) = PreAr(F,G)/\sim$.

Proposition. Coeq(F,G) forms a category.

By construction of Coeq(F,G) we have an arrow $h: \mathcal{D} \to Coeq(F,G)$ which is the identity on objects and sends arrows in \mathcal{D} to their corresponding class in Coeq(F,G).

Theorem. The pair (Coeq(F,G),h) gives the coequalizer of the arrows $C \xrightarrow{F} \mathcal{D}$.

Definition. Let \mathcal{G} be a group category and \mathcal{C} be a category. An action of \mathcal{G} on \mathcal{C} is a triple (F, α, β) where $F : \mathcal{G} \times \mathcal{C} \to \mathcal{C}$ is a bifunctor that sits in the following two pasting diagrams:

$$\begin{array}{ccc}
\mathcal{G} \times \mathcal{G} \times \stackrel{\sim}{\mathcal{C}} & \xrightarrow{\mathcal{C}} & \mathcal{G} \times \mathcal{C} \\
Id_{\mathcal{G}} \times F \middle\downarrow & \alpha & \downarrow F \\
\mathcal{G} \times \mathcal{C} & \xrightarrow{F} & \mathcal{C}
\end{array} \tag{1}$$

$$\begin{array}{c|c}
\mathcal{G} \times \mathcal{C} \xrightarrow{F} \mathcal{C} \\
I \times Id_{\mathcal{C}} & Id_{\mathcal{C}}
\end{array}$$

$$(2)$$

Further α and β must be compatible with associativity in G.

Definition. Let \mathcal{G} be a group category acting via the maps (F, α, β) on a category \mathcal{C} . We define the **quotient of** \mathcal{C} **by** \mathcal{G} to be the category that represents the coequalizer of the diagram $\mathcal{G} \times \mathcal{C} \xrightarrow{p_2} \mathcal{C}$ in the 2-category CAT.

Now generalize these constructions to STACKS using the universal properties of the coequalizer.

Example Let Coeq(F,G) denote the following fibered category. To each open $U \subset X$, $Coeq(F,G)(U) := Coeq(F_U,G_U)$. Let $V \hookrightarrow U$ be an inclusion of open sets in the space X. To define the restriction functors f^* for Coeq(F,G) consider the following diagram:

$$\begin{array}{ccc}
\mathcal{C}(U) \xrightarrow{F_U} \mathcal{D}(U) \xrightarrow{\varphi_U} Coeq(F,G)(U) \\
c^* \downarrow & \xrightarrow{F_U} & \downarrow d^* & \downarrow f^* \\
\mathcal{C}(V) \xrightarrow{G_V} \mathcal{D}(V) \xrightarrow{\varphi_V} Coeq(F,G)(V)
\end{array} \tag{3}$$

Also, as part of the data, we have 2-arrows $\alpha: F_V \circ c^* \Rightarrow d^* \circ F_U$ and $\beta: G_V \circ c^* \Rightarrow d^* \circ G_U$.

The 2-lien of a 2-gerbe

It is an object that is given locally by a group stack, with 2-descent given up to inner equivalence.

Proposition. For every 2-gerbe \mathcal{G} , there exists a 2-lien L of \mathcal{G} characterized up to a canonical 2-equivalence.

Thus we are justified in saying "the" 2-lien of a 2-gerbe \mathcal{G} .

Definition. A group category G is said to be a strict Picard category when its group law is endowed with a commutativity isomorphism $S_{X,Y}: XY \to YX$ which is functorial in X and Y and sits in a commutative square

$$\begin{array}{c}
X1 \xrightarrow{S} 1X \\
m \downarrow \qquad \qquad \downarrow S \\
X = == X
\end{array}$$
(4)

and two hexagonal "associativity" diagrams. In addition $S_{Y,X} \circ S_{X,Y} = 1_{XY}$ for all X, Y in G and $S_{X,X} = 1_X$ for all X. A gr-stack $\mathcal G$ is said to be a strict Picard stack if it is endowed with a commutativity natural transformation S for the group law $S_{X,Y}$ that induces for each open $U \subset X$ the structure of a strict Picard category on $\mathcal G(U)$.

Proposition. Let \mathcal{G} be a gr-stack on X. A 2-gerbe P on X is a \mathcal{G} -2-gerbe if and only if its 2-lien is locally equivalent to $lien_2(\mathcal{G})$.

Proposition. Let \mathcal{G} be a Picard stack on X. A gerbe P on X is an abelian \mathcal{G} -2-gerbe if and only if $lien_2(P)$ is equivalent to $lien_2(\mathcal{G})$.

 \mathcal{P} : connected \mathcal{G} -2-gerbe (for each pair of objects x, y in some fiber 2-category \mathcal{P}_U , the set of arrows in \mathcal{P}_U from x to y is non-empty), where \mathcal{G} is Picard.

Definition. We designate by $H^3(X,L)$ the set of equivalence classes of 2-gerbes with 2-lien L, and by $\check{H}^3(X,L) \subset H^3(X,L)$ the set of equivalence classes of connected 2-gerbes with 2-lien L.

Lemma. (Deligne) For every Picard stack P there exists a complex $K^{\cdot} \in C(X)$ such that $P \simeq ch(K)$.

Theorem.

$$\check{H}^3(X,\mathcal{G}) \stackrel{\sim}{\longrightarrow} H^3(X,K^{\cdot})$$
 (5)