Example 1:
In this example, NSPCG was used to solve the linear system Ax=bwhich resulted from discretizing the problem
PROGRAM MAIN (OUTPUT,TAPE6=OUTPUT)
C
C ... ARRAY DECLARATIONS.
C
REAL COEF(120,4), RHS(100), U(100), WKSP(600), UBAR(1),
A RPARM(30)
INTEGER JCOEF(4), IWKSP(300), IPARM(30), P(1), IP(1)
EXTERNAL CG, MIC2
C
NDIM = 120
MDIM = 4
NW = 600
INW = 300
C
C ... GENERATE COEF, JCOEF, AND RHS.
C
NX = 10
NY = 10
N = NX*NY
H = 1.0/FLOAT(NX + 1)
MAXNZ = 3
DO 10 I = 1,N
COEF(I,1) = 6.0
COEF(I,2) = -1.0
COEF(I,3) = -2.0
RHS(I) = 0.0
10 CONTINUE
K = 0
DO 30 J = 1,NY
Y = FLOAT(J)*H
DO 25 I = 1,NX
X = FLOAT(I)*H
K = K + 1
IF (J .EQ. 1) THEN
RHS(K) = RHS(K) + 2.0
ENDIF
IF (J .EQ. NY) THEN
RHS(K) = RHS(K) + 2.0*(1.0 + X)
COEF(K,3) = 0.0
ENDIF
IF (I .EQ. 1) THEN
RHS(K) = RHS(K) + 1.0
ENDIF
IF (I .EQ. NX) THEN
RHS(K) = RHS(K) + 1.0 + Y
COEF(K,2) = 0.0
ENDIF
25 CONTINUE
30 CONTINUE
JCOEF(1) = 0
JCOEF(2) = 1
JCOEF(3) = NX
CALL DFAULT (IPARM,RPARM)
C
C ... NOW, RESET SOME DEFAULT VALUES.
C
IPARM(2) = 50
IPARM(3) = 3
RPARM(1) = 1.0E-8
C
C ... GENERATE AN INITIAL GUESS FOR U AND CALL NSPCG.
C
CALL VFILL (N,U,0.0)
C
CALL NSPCG (MIC2,CG,NDIM,MDIM,N,MAXNZ,COEF,JCOEF,P,IP,
A U,UBAR,RHS,WKSP,IWKSP,NW,INW,IPARM,RPARM,IER)
STOP
END
INITIAL ITERATIVE PARAMETERS PREPROCESSOR AND PRECONDITIONER PARAMETERS IPARM(12) = 2 (NSTORE) IPARM(13) = 0 (ISCALE) IPARM(14) = 0 (IPERM ) IPARM(15) = 1 (IFACT ) IPARM(16) = 0 (LVFILL) IPARM(17) = 0 (LTRUNC) IPARM(18) = 2 (IPROPA) IPARM(19) = -1 (KBLSZ ) IPARM(20) = -1 (NBL2D ) IPARM(21) = 1 (IFCTV ) IPARM(22) = 1 (IQLR ) IPARM(23) = 2 (ISYMM ) IPARM(24) = 0 (IELIM ) IPARM(25) = 1 (NDEG ) RPARM(13) = .00000000E+00 (TIMFAC) RPARM(14) = .00000000E+00 (TIMTOT) RPARM(15) = .35500000E-11 (TOL ) RPARM(16) = .00000000E+00 (AINF ) INITIAL ITERATIVE PARAMETERS GENERAL AND ACCELERATION PARAMETERS IPARM( 1) = 2 (NTEST ) IPARM( 2) = 50 (ITMAX ) IPARM( 3) = 3 (LEVEL ) IPARM( 4) = 6 (NOUT ) IPARM( 5) = 0 (IDGTS ) IPARM( 6) = 1 (MAXADP) IPARM( 7) = 1 (MINADP) IPARM( 8) = 1 (IOMGAD) IPARM( 9) = 5 (NS1 ) IPARM(10) = 100000 (NS2 ) IPARM(11) = 0 (NS3 ) RPARM( 1) = .10000000E-07 (ZETA ) RPARM( 2) = .20000000E+01 (EMAX ) RPARM( 3) = .10000000E+01 (EMIN ) RPARM( 4) = .75000000E+00 (FF ) RPARM( 5) = .75000000E+00 (FFF ) RPARM( 6) = .00000000E+00 (TIMIT ) RPARM( 7) = .00000000E+00 (DIGIT1) RPARM( 8) = .00000000E+00 (DIGIT2) RPARM( 9) = .10000000E+01 (OMEGA ) RPARM(10) = .00000000E+00 (ALPHAB) RPARM(11) = .25000000E+00 (BETAB ) RPARM(12) = .00000000E+00 (SPECR )
CG INTERMEDIATE OUTPUT AFTER EACH ITERATION ITERATION CONVERGENCE EMAX EMIN N S TEST 0 0 .99366E+01 .20000E+01 .10000E+01 1 1 .46168E-01 .10010E+01 .10010E+01 2 2 .57189E-02 .20232E+01 .10002E+01 3 3 .12255E-02 .24807E+01 .10001E+01 4 4 .23770E-03 .27522E+01 .10000E+01 5 5 .49325E-04 .28711E+01 .10000E+01 6 6 .87776E-05 .29024E+01 .10000E+01 7 7 .16811E-05 .29071E+01 .10000E+01 8 8 .42316E-06 .29074E+01 .10000E+01 9 9 .15339E-06 .29075E+01 .10000E+01 10 10 .38502E-07 .29075E+01 .10000E+01 11 11 .71532E-08 .29076E+01 .10000E+01 CG HAS CONVERGED IN 11 ITERATIONS
FINAL ITERATIVE PARAMETERS GENERAL AND ACCELERATION PARAMETERS IPARM( 1) = 2 (NTEST ) IPARM( 2) = 11 (ITMAX ) IPARM( 3) = 3 (LEVEL ) IPARM( 4) = 6 (NOUT ) IPARM( 5) = 0 (IDGTS ) IPARM( 6) = 1 (MAXADP) IPARM( 7) = 1 (MINADP) IPARM( 8) = 1 (IOMGAD) IPARM( 9) = 5 (NS1 ) IPARM(10) = 100000 (NS2 ) IPARM(11) = 0 (NS3 ) RPARM( 1) = .10000000E-07 (ZETA ) RPARM( 2) = .29076287E+01 (EMAX ) RPARM( 3) = .10000004E+01 (EMIN ) RPARM( 4) = .75000000E+00 (FF ) RPARM( 5) = .75000000E+00 (FFF ) RPARM( 6) = .34800000E+00 (TIMIT ) RPARM( 7) = .81454998E+01 (DIGIT1) RPARM( 8) = .78457903E+01 (DIGIT2) RPARM( 9) = .10000000E+01 (OMEGA ) RPARM(10) = .00000000E+00 (ALPHAB) RPARM(11) = .25000000E+00 (BETAB ) RPARM(12) = .00000000E+00 (SPECR ) FINAL ITERATIVE PARAMETERS PREPROCESSOR AND PRECONDITIONER PARAMETERS IPARM(12) = 2 (NSTORE) IPARM(13) = 0 (ISCALE) IPARM(14) = 0 (IPERM ) IPARM(15) = 1 (IFACT ) IPARM(16) = 0 (LVFILL) IPARM(17) = 0 (LTRUNC) IPARM(18) = 1 (IPROPA) IPARM(19) = -1 (KBLSZ ) IPARM(20) = -1 (NBL2D ) IPARM(21) = 1 (IFCTV ) IPARM(22) = 1 (IQLR ) IPARM(23) = 2 (ISYMM ) IPARM(24) = 0 (IELIM ) IPARM(25) = 1 (NDEG ) RPARM(13) = .22000000E-01 (TIMFAC) RPARM(14) = .51200000E+00 (TIMTOT) RPARM(15) = .35500000E-11 (TOL ) RPARM(16) = .00000000E+00 (AINF )Example 2:
In this example, the same problem was solved but primary storage format was used. Thus all five nonzero diagonals were stored. The iterative method used was the Reduced System (RS) method with conjugate gradient acceleration. To use this method, a red-black coloring was applied to the mesh with the REDBLK facility. Since NSPCG must permute the matrix, the P and IP vectors had to be dimensioned to the problem size. The program to generate the matrix data and the output resulting from this call to NSPCG is given below:
PROGRAM MAIN (OUTPUT,TAPE6=OUTPUT)
C
C ... ARRAY DECLARATIONS.
C
REAL COEF(120,5), RHS(100), U(100), WKSP(600), UBAR(1),
A RPARM(30)
INTEGER JCOEF(120,5), IWKSP(300), IPARM(30), P(100), IP(100)
EXTERNAL CG, RS6
C
NDIM = 120
MDIM = 5
NW = 600
INW = 300
C
C ... GENERATE COEF, JCOEF, AND RHS.
C
NX = 10
NY = 10
N = NX*NY
H = 1.0/FLOAT(NX + 1)
MAXNZ = 5
DO 10 I = 1,N
COEF(I,1) = 6.0
COEF(I,2) = -1.0
COEF(I,3) = -2.0
COEF(I,4) = -1.0
COEF(I,5) = -2.0
JCOEF(I,1) = I
JCOEF(I,2) = I + 1
JCOEF(I,3) = I + NX
JCOEF(I,4) = I - 1
JCOEF(I,5) = I - NX
RHS(I) = 0.0
10 CONTINUE
K = 0
DO 40 J = 1,NY
Y = FLOAT(J)*H
DO 35 I = 1,NX
X = FLOAT(I)*H
K = K + 1
IF (J .EQ. 1) THEN
RHS(K) = RHS(K) + 2.0
COEF(K,5) = 0.0
JCOEF(K,5) = 0
ENDIF
IF (J .EQ. NY) THEN
RHS(K) = RHS(K) + 2.0*(1.0 + X)
COEF(K,3) = 0.0
JCOEF(K,3) = 0
ENDIF
IF (I .EQ. 1) THEN
RHS(K) = RHS(K) + 1.0
COEF(K,4) = 0.0
JCOEF(K,4) = 0
ENDIF
IF (I .EQ. NX) THEN
RHS(K) = RHS(K) + 1.0 + Y
COEF(K,2) = 0.0
JCOEF(K,2) = 0
ENDIF
35 CONTINUE
40 CONTINUE
CALL DFAULT (IPARM,RPARM)
C
C ... NOW, RESET SOME DEFAULT VALUES.
C
IPARM(3) = 3
IPARM(12) = 1
IPARM(14) = 1
IPARM(23) = 0
C
C ... GENERATE AN INITIAL GUESS FOR U AND CALL NSPCG.
C
CALL VFILL (N,U,0.0)
C
CALL REDBLK (NDIM,N,MAXNZ,COEF,JCOEF,P,IP,1,IWKSP,IER)
CALL NSPCG (RS6,CG,NDIM,MDIM,N,MAXNZ,COEF,JCOEF,P,IP,
A U,UBAR,RHS,WKSP,IWKSP,NW,INW,IPARM,RPARM,IER)
STOP
END
INITIAL ITERATIVE PARAMETERS
PREPROCESSOR AND PRECONDITIONER PARAMETERS
IPARM(12) = 1 (NSTORE)
IPARM(13) = 0 (ISCALE)
IPARM(14) = 1 (IPERM )
IPARM(15) = 1 (IFACT )
IPARM(16) = 0 (LVFILL)
IPARM(17) = 0 (LTRUNC)
IPARM(18) = 2 (IPROPA)
IPARM(19) = -1 (KBLSZ )
IPARM(20) = -1 (NBL2D )
IPARM(21) = 1 (IFCTV )
IPARM(22) = 1 (IQLR )
IPARM(23) = 0 (ISYMM )
IPARM(24) = 0 (IELIM )
IPARM(25) = 1 (NDEG )
RPARM(13) = .00000000E+00 (TIMFAC)
RPARM(14) = .00000000E+00 (TIMTOT)
RPARM(15) = .35500000E-11 (TOL )
RPARM(16) = .00000000E+00 (AINF )
INITIAL ITERATIVE PARAMETERS
GENERAL AND ACCELERATION PARAMETERS
IPARM( 1) = 2 (NTEST )
IPARM( 2) = 100 (ITMAX )
IPARM( 3) = 3 (LEVEL )
IPARM( 4) = 6 (NOUT )
IPARM( 5) = 0 (IDGTS )
IPARM( 6) = 1 (MAXADP)
IPARM( 7) = 1 (MINADP)
IPARM( 8) = 1 (IOMGAD)
IPARM( 9) = 5 (NS1 )
IPARM(10) = 100000 (NS2 )
IPARM(11) = 0 (NS3 )
RPARM( 1) = .10000000E-05 (ZETA )
RPARM( 2) = .20000000E+01 (EMAX )
RPARM( 3) = .10000000E+01 (EMIN )
RPARM( 4) = .75000000E+00 (FF )
RPARM( 5) = .75000000E+00 (FFF )
RPARM( 6) = .00000000E+00 (TIMIT )
RPARM( 7) = .00000000E+00 (DIGIT1)
RPARM( 8) = .00000000E+00 (DIGIT2)
RPARM( 9) = .10000000E+01 (OMEGA )
RPARM(10) = .00000000E+00 (ALPHAB)
RPARM(11) = .25000000E+00 (BETAB )
RPARM(12) = .00000000E+00 (SPECR )
CG
INTERMEDIATE OUTPUT AFTER EACH ITERATION
ITERATION CONVERGENCE EMAX EMIN
N S TEST
0 0 .58026E+01 .20000E+01 .10000E+01
1 1 .43389E+00 .63392E+00 .63392E+00
2 2 .39789E+00 .86043E+00 .29993E+00
3 3 .52881E+00 .92756E+00 .15453E+00
4 4 .36826E+00 .97104E+00 .98805E-01
5 5 .20966E+00 .98764E+00 .83754E-01
6 6 .80236E-01 .99236E+00 .80254E-01
7 7 .26052E-01 .99496E+00 .79652E-01
8 8 .16576E-01 .99605E+00 .79530E-01
9 9 .70079E-02 .99698E+00 .79406E-01
10 10 .23601E-02 .99731E+00 .79383E-01
11 11 .12251E-02 .99754E+00 .79377E-01
12 12 .41032E-03 .99777E+00 .79374E-01
13 13 .14115E-03 .99785E+00 .79374E-01
14 14 .44531E-04 .99795E+00 .79374E-01
15 15 .13200E-04 .99802E+00 .79374E-01
16 16 .51949E-05 .99804E+00 .79374E-01
17 17 .12208E-05 .99806E+00 .79374E-01
18 18 .24719E-06 .99807E+00 .79374E-01
CG HAS CONVERGED IN 18 ITERATIONS
FINAL ITERATIVE PARAMETERS
GENERAL AND ACCELERATION PARAMETERS
IPARM( 1) = 2 (NTEST )
IPARM( 2) = 18 (ITMAX )
IPARM( 3) = 3 (LEVEL )
IPARM( 4) = 6 (NOUT )
IPARM( 5) = 0 (IDGTS )
IPARM( 6) = 1 (MAXADP)
IPARM( 7) = 1 (MINADP)
IPARM( 8) = 1 (IOMGAD)
IPARM( 9) = 5 (NS1 )
IPARM(10) = 100000 (NS2 )
IPARM(11) = 0 (NS3 )
RPARM( 1) = .10000000E-05 (ZETA )
RPARM( 2) = .99806941E+00 (EMAX )
RPARM( 3) = .79373655E-01 (EMIN )
RPARM( 4) = .75000000E+00 (FF )
RPARM( 5) = .75000000E+00 (FFF )
RPARM( 6) = .31900000E+00 (TIMIT )
RPARM( 7) = .66069656E+01 (DIGIT1)
RPARM( 8) = .71292805E+01 (DIGIT2)
RPARM( 9) = .10000000E+01 (OMEGA )
RPARM(10) = .00000000E+00 (ALPHAB)
RPARM(11) = .25000000E+00 (BETAB )
RPARM(12) = .00000000E+00 (SPECR )
FINAL ITERATIVE PARAMETERS
PREPROCESSOR AND PRECONDITIONER PARAMETERS
IPARM(12) = 1 (NSTORE)
IPARM(13) = 0 (ISCALE)
IPARM(14) = 1 (IPERM )
IPARM(15) = 1 (IFACT )
IPARM(16) = 0 (LVFILL)
IPARM(17) = 0 (LTRUNC)
IPARM(18) = 2 (IPROPA)
IPARM(19) = -1 (KBLSZ )
IPARM(20) = -1 (NBL2D )
IPARM(21) = 1 (IFCTV )
IPARM(22) = 1 (IQLR )
IPARM(23) = 0 (ISYMM )
IPARM(24) = 0 (IELIM )
IPARM(25) = 1 (NDEG )
RPARM(13) = .00000000E+00 (TIMFAC)
RPARM(14) = .53800000E+00 (TIMTOT)
RPARM(15) = .35500000E-11 (TOL )
RPARM(16) = .00000000E+00 (AINF )
Example 3:
In this example, the same problem was solved using the Line SOR method with line red-black ordering. To use this method, a line red-black coloring was applied to the mesh with the COLOR facility. Since NSPCG must permute the matrix, the P and IP vectors had to be dimensioned to the problem size. The matrix was stored in the symmetric diagonal storage format. Note that even though only three nonzero diagonals were stored, it was necessary to dimension the COEF and JCOEF arrays to be large enough to store the permuted matrix. The program to generate the matrix data and the output resulting from this call to NSPCG is given below:
PROGRAM MAIN (OUTPUT,TAPE6=OUTPUT)
C
C ... ARRAY DECLARATIONS.
C
REAL COEF(120,5), RHS(100), U(100), WKSP(600), UBAR(1),
A RPARM(30)
INTEGER JCOEF(5), IWKSP(300), IPARM(30), P(100), IP(100)
INTEGER PATT(2)
EXTERNAL SOR, SOR7
C
NDIM = 120
MDIM = 5
NW = 600
INW = 300
C
C ... GENERATE COEF, JCOEF, AND RHS.
C
NX = 10
NY = 10
NZ = 1
N = NX*NY
H = 1.0/FLOAT(NX + 1)
MAXNZ = 3
DO 10 I = 1,N
COEF(I,1) = 6.0
COEF(I,2) = -1.0
COEF(I,3) = -2.0
RHS(I) = 0.0
10 CONTINUE
K = 0
DO 30 J = 1,NY
Y = FLOAT(J)*H
DO 25 I = 1,NX
X = FLOAT(I)*H
K = K + 1
IF (J .EQ. 1) THEN
RHS(K) = RHS(K) + 2.0
ENDIF
IF (J .EQ. NY) THEN
RHS(K) = RHS(K) + 2.0*(1.0 + X)
COEF(K,3) = 0.0
ENDIF
IF (I .EQ. 1) THEN
RHS(K) = RHS(K) + 1.0
ENDIF
IF (I .EQ. NX) THEN
RHS(K) = RHS(K) + 1.0 + Y
COEF(K,2) = 0.0
ENDIF
25 CONTINUE
30 CONTINUE
JCOEF(1) = 0
JCOEF(2) = 1
JCOEF(3) = NX
CALL DFAULT (IPARM,RPARM)
C
C ... NOW, RESET SOME DEFAULT VALUES.
C
IPARM(3) = 3
IPARM(14) = 1
C
C ... GENERATE AN INITIAL GUESS FOR U AND CALL NSPCG.
C
CALL VFILL (N,U,0.0)
C
NXP = 1
NYP = 2
NZP = 1
PATT(1) = 1
PATT(2) = 2
CALL COLOR (NXP,NYP,NZP,NX,NY,NZ,PATT,P)
CALL NSPCG (SOR7,SOR,NDIM,MDIM,N,MAXNZ,COEF,JCOEF,P,IP,
A U,UBAR,RHS,WKSP,IWKSP,NW,INW,IPARM,RPARM,IER)
STOP
END
INITIAL ITERATIVE PARAMETERS
PREPROCESSOR AND PRECONDITIONER PARAMETERS
IPARM(12) = 2 (NSTORE)
IPARM(13) = 0 (ISCALE)
IPARM(14) = 1 (IPERM )
IPARM(15) = 1 (IFACT )
IPARM(16) = 0 (LVFILL)
IPARM(17) = 0 (LTRUNC)
IPARM(18) = 2 (IPROPA)
IPARM(19) = -1 (KBLSZ )
IPARM(20) = -1 (NBL2D )
IPARM(21) = 1 (IFCTV )
IPARM(22) = 1 (IQLR )
IPARM(23) = 2 (ISYMM )
IPARM(24) = 0 (IELIM )
IPARM(25) = 1 (NDEG )
RPARM(13) = .00000000E+00 (TIMFAC)
RPARM(14) = .00000000E+00 (TIMTOT)
RPARM(15) = .35500000E-11 (TOL )
RPARM(16) = .00000000E+00 (AINF )
INITIAL ITERATIVE PARAMETERS
GENERAL AND ACCELERATION PARAMETERS
IPARM( 1) = 2 (NTEST )
IPARM( 2) = 100 (ITMAX )
IPARM( 3) = 3 (LEVEL )
IPARM( 4) = 6 (NOUT )
IPARM( 5) = 0 (IDGTS )
IPARM( 6) = 1 (MAXADP)
IPARM( 7) = 1 (MINADP)
IPARM( 8) = 1 (IOMGAD)
IPARM( 9) = 5 (NS1 )
IPARM(10) = 100000 (NS2 )
IPARM(11) = 0 (NS3 )
RPARM( 1) = .10000000E-05 (ZETA )
RPARM( 2) = .20000000E+01 (EMAX )
RPARM( 3) = .10000000E+01 (EMIN )
RPARM( 4) = .75000000E+00 (FF )
RPARM( 5) = .75000000E+00 (FFF )
RPARM( 6) = .00000000E+00 (TIMIT )
RPARM( 7) = .00000000E+00 (DIGIT1)
RPARM( 8) = .00000000E+00 (DIGIT2)
RPARM( 9) = .10000000E+01 (OMEGA )
RPARM(10) = .00000000E+00 (ALPHAB)
RPARM(11) = .25000000E+00 (BETAB )
RPARM(12) = .00000000E+00 (SPECR )
SOR
INTERMEDIATE OUTPUT AFTER EACH ITERATION
NUMBER OF CONVERGENCE EMAX OMEGA SPECTRAL
ITERATIONS TEST RADIUS
0 0 .10000E+04 .20000E+01 .10000E+01 .00000E+00
1 0 .10000E+04 .20000E+01 .10000E+01 .61609E+00
2 0 .60559E+00 .20000E+01 .10000E+01 .63475E+00
3 0 .65576E+00 .20000E+01 .10000E+01 .77061E+00
4 0 .67933E+00 .91212E+00 .10000E+01 .83197E+00
5 1 .67933E+00 .91212E+00 .14185E+01 .14752E+01
6 1 .67933E+00 .91212E+00 .14185E+01 .10876E+01
7 1 .67933E+00 .91212E+00 .14185E+01 .77707E+00
8 1 .36291E+00 .91212E+00 .14185E+01 .71832E+00
9 1 .23778E+00 .91212E+00 .14185E+01 .69934E+00
10 1 .10202E+00 .91212E+00 .14185E+01 .69195E+00
11 1 .69782E-01 .91212E+00 .14185E+01 .68947E+00
12 1 .47922E-01 .91212E+00 .14185E+01 .68862E+00
13 1 .32945E-01 .91212E+00 .14185E+01 .68826E+00
14 1 .22660E-01 .91212E+00 .14185E+01 .68813E+00
15 1 .14844E-01 .94045E+00 .14185E+01 .68808E+00
16 2 .14844E-01 .94045E+00 .14926E+01 .74939E+00
17 2 .14844E-01 .94045E+00 .14926E+01 .74302E+00
18 2 .14844E-01 .94045E+00 .14926E+01 .65901E+00
19 2 .27382E-02 .94045E+00 .14926E+01 .61710E+00
20 2 .15091E-02 .94045E+00 .14926E+01 .59201E+00
21 2 .83411E-03 .94045E+00 .14926E+01 .57533E+00
22 2 .45715E-03 .94045E+00 .14926E+01 .56343E+00
23 2 .24843E-03 .94045E+00 .14926E+01 .55452E+00
24 2 .13395E-03 .94045E+00 .14926E+01 .54759E+00
25 2 .71687E-04 .94045E+00 .14926E+01 .54206E+00
26 2 .38156E-04 .94045E+00 .14926E+01 .53753E+00
27 2 .20202E-04 .94045E+00 .14926E+01 .53376E+00
28 2 .10645E-04 .94045E+00 .14926E+01 .53057E+00
29 2 .55865E-05 .94045E+00 .14926E+01 .52784E+00
30 2 .29208E-05 .94045E+00 .14926E+01 .52547E+00
31 2 .15221E-05 .94045E+00 .14926E+01 .52339E+00
32 2 .79083E-06 .94045E+00 .14926E+01 .52156E+00
SOR HAS CONVERGED IN 32 ITERATIONS
FINAL ITERATIVE PARAMETERS
GENERAL AND ACCELERATION PARAMETERS
IPARM( 1) = 2 (NTEST )
IPARM( 2) = 32 (ITMAX )
IPARM( 3) = 3 (LEVEL )
IPARM( 4) = 6 (NOUT )
IPARM( 5) = 0 (IDGTS )
IPARM( 6) = 1 (MAXADP)
IPARM( 7) = 1 (MINADP)
IPARM( 8) = 1 (IOMGAD)
IPARM( 9) = 5 (NS1 )
IPARM(10) = 100000 (NS2 )
IPARM(11) = 0 (NS3 )
RPARM( 1) = .10000000E-05 (ZETA )
RPARM( 2) = .94045018E+00 (EMAX )
RPARM( 3) = .10000000E+01 (EMIN )
RPARM( 4) = .75000000E+00 (FF )
RPARM( 5) = .75000000E+00 (FFF )
RPARM( 6) = .52100000E+00 (TIMIT )
RPARM( 7) = .61019185E+01 (DIGIT1)
RPARM( 8) = .63177121E+01 (DIGIT2)
RPARM( 9) = .14926136E+01 (OMEGA )
RPARM(10) = .00000000E+00 (ALPHAB)
RPARM(11) = .25000000E+00 (BETAB )
RPARM(12) = .52156493E+00 (SPECR )
FINAL ITERATIVE PARAMETERS
PREPROCESSOR AND PRECONDITIONER PARAMETERS
IPARM(12) = 2 (NSTORE)
IPARM(13) = 0 (ISCALE)
IPARM(14) = 1 (IPERM )
IPARM(15) = 1 (IFACT )
IPARM(16) = 0 (LVFILL)
IPARM(17) = 0 (LTRUNC)
IPARM(18) = 1 (IPROPA)
IPARM(19) = -1 (KBLSZ )
IPARM(20) = -1 (NBL2D )
IPARM(21) = 1 (IFCTV )
IPARM(22) = 1 (IQLR )
IPARM(23) = 2 (ISYMM )
IPARM(24) = 0 (IELIM )
IPARM(25) = 1 (NDEG )
RPARM(13) = .50000000E-02 (TIMFAC)
RPARM(14) = .75100000E+00 (TIMTOT)
RPARM(15) = .35500000E-11 (TOL )
RPARM(16) = .00000000E+00 (AINF )
Next: Using NSPCG in Matrix
Up: NSPCG User's Guide
Previous: Use of Subroutine VFILL