
INTRO TO HOMOLOGICAL ALGEBRA AND SPECTRAL SEQUENCES

MINICOURSE

RICHARD WONG

Abstract. Focus on Ext, Tor, and the Serre and Universal Coefficient Spectral Sequences. These are very

useful for calculating homology/cohomology of topological spaces. There will also be some group cohomology

calculations. Adrian will lecture on how to build a spectral sequence from a filtration.

1. Monday Exercises

Exercise 1.1. Show that there exists a chain homotopy equivalence f : X → X ′ where fn : Xn → X ′n is
not an isomorphism by considering the chain complexes

· · · → Z/4 ·2−→ Z/4 ·2−→ Z/4 ·2−→ · · ·
· · · → 0→ 0→ 0→ 0 · · ·

Exercise 1.2. Show that quasi-isomorphism is not symmetric by considering the chain complexes of abelian
groups

· · · → 0→ Z ·2−→ Z→ 0 · · ·
· · · → 0→ 0→ Z/2→ 0 · · ·

This also gives an example of a quasi-isomorphism that is not a chain homotopy equivalence.

Exercise 1.3. Let R = k[x, y]. Show that the chain complexes of R-modules

0→ R⊕R h−→ R→ 0

0→ R
0−→ k → 0

have the same homology but are not quasi-isomorphic. The map h is defined by

h(f(x, y), g(x, y)) = xf(x, y) + yg(x, y)

Exercise 1.4. Show that a short exact sequence 0→ A→ B → C of chain complexes of R-modules givess
rise to a long exact sequence of homology groups

· · · → Hk(A)→ Hk(B)→ Hk(C)→ Hk−1(A)→ Hk−1(B)→ Hk−1(C)→ Hk−2(A)→ · · ·

Exercise 1.5. Show that the category of chain complexes of R-modules up to quasi-isomorphism (that is,
you have the same objects of Ch(R), but you invert all the quasi-isomorphisms) is not abelian, but is instead
triangulated. This category is called the derived category of R.

Exercise 1.6. If A is a bounded chain complex of finitely generated abelian groups (that is, all but finitely
many An are 0, and all the An are finitely generated), then we can define the Euler characteristic

χ(A) =
∑

(−1)nrank(An)

Show that Euler characteristic can also be computed on the level of homology, that is

χ(A) =
∑

(−1)krank(Hk(A))

Exercise 1.7. Watch the 1980 film, “It’s My Turn”, an American romantic comedy-drama film starring Jill
Clayburgh, Michael Douglas and Charles Grodin.

Exercise 1.8. Prove the splitting lemma: For any short exact sequence of R-modules 0→ A
f−→ B

g−→ C → 0,
then the following are equivalent:
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(1) There exists a map u : B → A such that u ◦ f = idA.
(2) There exists a map v : C → B such that v ◦ g = idB .
(3) B ' A⊕ C.

Exercise 1.9. Show that the splitting lemma does not hold in the category of groups. (Hint: Consider the

SES of groups 0→ A3
i−→ S3

det−−→ Z/2→ 0)

2. Tuesday Exercises

Exercise 2.1. Prove the following properties of Tor and Ext.

(1) TorR1 (⊕iMi, N) ∼= ⊕iTorR1 (Mi, N)

(2) TorR1 (M,N) = 0 if M (or N) is free.

(3) Tor(Z/n,A) = ker(A
·n−→ A) for A an abelian group.

(4) For each short exact sequence 0→ A→ B → C → 0, we have a natural exact sequence

0→ TorR1 (M,A)→ TorR1 (M,B)→ TorR1 (M,C)→M ⊗A→M ⊗B →M ⊗ C → 0

(5) TorR1 (M,N) ∼= TorR1 (N,M).

(1) Ext1R(⊕iMi, N) ∼= ⊕iExt1R(Mi, N)
(2) Ext1R(M,N) = 0 if M is free (or in general, projective).
(3) Ext(Z/n,A) = A/nA for A an abelian group.
(4) For each short exact sequence of R-modules 0→ A→ B → C → 0, we have a natural exact sequence

0→ Hom(C,N)→ Hom(B,N)→ Hom(A,N)→ Ext1R(C,N)→ Ext1R(B,N)→ Ext1R(A,N)→ 0

(5) Similarly, for each short exact sequence of R-modules 0 → A → B → C → 0, we have a natural
exact sequence

0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C)→ Ext1R(M,A)→ Ext1R(M,B)→ Ext1R(M,C)→ 0

Exercise 2.2. Suppose that X is a topological space such that Hk(X) is free and finitely generated for all
k. Prove that Hk(X) ∼= Hk(X).

(a) Compute Hk(CP∞) for all n.
(b) Compute Hk(Sn) for all k, n.

Exercise 2.3. Suppose that R is a field. Then show that H∗(X) ⊗R M ∼= H∗(X;M), and H∗(X;M) ∼=
Hom(H∗(X),M).

Exercise 2.4. Compute Hk(RP∞;Z/2) for all k.

Exercise 2.5. Compute Hk(RP∞;Z/m) for all k and for any odd integer m ≥ 3.

Exercise 2.6. Compute Hk(RP∞ × RP∞;Z) for all k.

Exercise 2.7. Compute Hk(RP∞ × RP∞;Z/2) for all k.

Exercise 2.8. Compute Hk(RP∞;Z) for all k.

Exercise 2.9. Compute Hk(RP∞;Z/2) for all k.

Exercise 2.10. Let G be an abelian group. Let M(G,n) be a Moore space, that is to say it satisfies

H̃k(M(G,n)) =

{
G k = n
0 else

(a) Construct a CW complex M(Z/m, n) having 3 cells.
(b) Consider the map f : M(Z/m, n)→ Sn+1 that collapses the n-skeleton. Use this map to show that the

splitting in the Universal Coefficient Theorem is not natural.
(c) Consider the map f × id : M(Z/m, n)×M(Z/m, n)→ Sn+1 ×M(Z/m, n). Use this map to show that

the splitting in the Künneth Theorem is not natural.
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3. Wednesday Exercises

Exercise 3.1. Where does the term Ext come from? Show that Ext1R(M,N) is isomorphic to the group of
extensions up to equivalence of M by N , with addition given by the Baer sum:

Definition 3.2. If M and N are R-modules, then we say an extension of M by N is a SES of R-modules:

0→ N → E →M → 0

Definition 3.3. Two extensions 0→ N → E →M → 0 and 0→ N → E′ →M → 0 are equivalent if there
is a commutative diagram, middle is isomorphism

Proposition 3.4. The set of equivalence classes of extensions has a group structure coming from Baer
sum. Given two extensions 0 → N → E → M → 0 and 0 → N → E′ → M → 0, form the SES
0→ N ⊕N → E ⊕E′ →M ⊕M → 0. Pull back along the diagonal map M →M ⊕M , and then push out
along the sum map A⊕A→ A to obtain the Baer sum 0→ N → E′′ →M → 0

Exercise 3.5. Generalize the previous exercise to show that ExtnR(M,N) is isomorphic to the group of
extensions of M by N of length n up to equivalence.

Definition 3.6. If M and N are R-modules, then we say an extension of M by N of length n is an exact
sequence of R-modules:

0→ N → En−1 → · · ·E0 →M → 0

Exercise 3.7. Show that we have an associative and unital map called the Yoneda product:

ExtnR(N,P )⊗ ExtmR (M,N)→ Extm+n
R (M,P )

by considering the isomorphism bewteen ExtnR(M,N) and the group of extensions of M by N of length
n up to equivalence.

Exercise 3.8. Let M be a ZG-module. Show that H0(G;M) = MG, the G-fixed points of M . Also show
that H0(G;M) = MG, the coinvariants of M . In other words, MG is the quotient of M by the submodule
generated by elements of the form g ·m−m.

Exercise 3.9. Show that if k is a field of characteristic p, and G is Z/p, then

H∗((G)n, k) =

{
Fp[x1, · · · , xn] |xi| = 1, p = 2
Λ[x1, . . . xn]⊗ Fp[y1, · · · , yn] |xi| = 1, |yi| = 2, p 6= 2

4. Friday Exercises

Exercise 4.1. Show that the cohomology of X with local coefficients in Z[π(X)] is isomorphic to the

cohomology of the universal cover of X, X̃. That is,

Hn(X;Z[π(X)]) ∼= Hn(X̃)

Exercise 4.2. Show that Hn(G; k) ∼= Hn(BG; k).

Exercise 4.3. Let 1 → N → G → G/N → 1 be a SES of groups, and let M be a G-module (M is an
abelian group with a G-action that distributes over addition).

Show that we have the Lyndon-Hochschild-Serre spectral sequence, with

E2
p,q = Hq(G/N ;Hq(N ;M))⇒ Hp+q(G;M)

Exercise 4.4. Show that a (Serre) fibration F → E → B induces a long exact sequence of homotopy groups

πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ π0(E)

Exercise 4.5. Prove(recover) the Hurewicz isomorphism using the path fibration.

Exercise 4.6. Prove(recover) the Eilenberg-Zilber Theorem.

Exercise 4.7. Play around with the fibration Sn → Dn → Sn+1.

Exercise 4.8. Play around with the Hopf fibration S1 → S3 → S2.
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Exercise 4.9. Compute the homology and cohomology of the degree p map from Sn → Sn. (assuming we
have replaced it with a Serre fibration).

Exercise 4.10.

Definition 4.11. Let V2(Rn+1) be the space of orthogonal pairs of vectors in Rn+1.

(1) Show we have a Serre fibration S2 → V2(Rn+1)→ Sn

(2) Compute H∗(V2(Rn+1)).
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