Symmetric Spaces Exercises Day 3

Max Riestenberg

May 31, 2018

Assume M is a complete simply connected manifold of nonpositive curvature.

- 1. Let G be a semisimple Lie group with finite center and no compact factors and K be a maximal compact subgroup. Show that the center of G acts trivially on G/K.
- 2. Show that the displacement function is convex.
- 3. An isometry ϕ of M is a *Clifford translation* if its displacement function is constant on M. Show that if ϕ is a nontrivial Clifford translation of M then $M = M_0 \times M_1$ has a Euclidean factor M_0 and ϕ is a Euclidean translation on M_0 and the identity on M_1 .
- 4. Let ϕ be an elliptic isometry of M. Show that its fixed point set is a connected, complete, totally geodesic submanifold of M.
- 5. Let M/Γ be a closed manifold with $\Gamma \subset \text{Isom}_0(M)$ discrete. Show that every nonidentity element in Γ is axial.
- 6. The canonical inner product ϕ_p on \mathfrak{g} is defined by $\phi_p(X, Y) = -B(\theta_p X, Y)$ where B is the Killing form on \mathfrak{g} and θ_p is the Cartan involution at $p \in M$. Show that if $X \in \mathfrak{k}$, ad X is a skew-symmetric transformation of \mathfrak{g} relative to ϕ_p .
- 7. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} . Then \mathfrak{g} decomposes into the ϕ_p -orthogonal direct sum of root spaces

 $\mathfrak{g}_{\alpha} = \{ X \in \mathfrak{g} | \text{ if } A \in \mathfrak{a} \text{ then } \operatorname{ad} A(X) = \alpha(A)X \}.$

Prove all of the following properties of this root space decomposition:

- (a) $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}$
- (b) If $\alpha \in \Lambda = \{\text{non-zero roots}\}$ then $-\alpha \in \Lambda$ and the Cartan involution θ_p is an isomorphism from $\mathfrak{g}_{\alpha} \to \mathfrak{g}_{-\alpha}$.
- (c) The Cartan involution θ_p preserves \mathfrak{g}_0 so $\mathfrak{g}_0 = \mathfrak{g}_0 \cap \mathfrak{k} + \mathfrak{a}$.
- (d) If $A \in \mathfrak{a}$ then $\operatorname{Ad}(e^{tA}) = e^{t\alpha(A)} \cdot id_{\mathfrak{g}_{\alpha}}$ on \mathfrak{g}_{α} .
- (e) If $\alpha \neq -\beta$ then $B(\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta})=0.$
- 8. Find a symmetric space of noncompact type where \mathfrak{a} is not all of \mathfrak{g}_0 .
- 9. Show that $PSL_n(\mathbb{R})$ is the connected component of the isometry group of SL_n/SO_n .