Symmetric Spaces Exercises Day 6

Max Riestenberg

June 4, 2018

Assume M is a symmetric space of noncompact type and $G = \text{Isom}_0(M)$.

- 1. Let v be a regular unit vector at a point p in M. Let $g \in G$ be an isometry such that g(p) = p and $dg(v) \in W(v)$. Then dg(v) = v. (In fact, dg fixes every vector tangent to the unique maximal flat containing v.)
- 2. Show that every parabolic subgroup acts transitively on M.
- 3. Show that given any pair of regular unit vectors v, w at points p, q respectively, there exists $g \in G$ such that gp = q and $dgv \in W(w)$.
- 4. Let $p \in M$ with stabilizer the maximal compact K and induced Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$. Let A_0 be any nonzero element of \mathfrak{p} and $\phi \in K$ such that $\operatorname{Ad}(\phi)(A_0) = A_0$. Then for any $A \in E_{A_0}$, the intersection of all maximal abelian subspaces containing A_0 , show that $\operatorname{Ad}(\phi)(A) = A$. (Hard. See p145 of Eberlein)
- 5. A point $x \in M(\infty)$ is *regular* if there exists a regular geodesic in its asymptotic class. Show that every geodesic in a regular ideal point x is regular.
- 6. A parabolic subgroup G_x is minimal if $P_y \subset P_x$ for some $y \in M(\infty)$ implies $P_y = P_x$, where $P_x = (G_x)_0$. Show that $x \in M(\infty)$ is regular if and only if G_x is minimal.

7. Let p be a point in M, F be a maximal flat in M containing p, and $z \in M(\infty)$. It makes sense to regard $F(\infty)$ as a subset of $M(\infty)$. Show that $G(z) \cap F(\infty)$ is finite, i.e. the G-orbit of z intersects $F(\infty)$ in finitely many points.