Symmetric Spaces Exercises Day 7

Max Riestenberg

June 5, 2018

Assume M is a symmetric space of noncompact type and $G = \text{Isom}_0(M)$.

- 1. If W(x) = W(gx) for some $g \in G$ and $x \in M(\infty)$ then gx = x. Use this to show that
 - (a) for every $x \in M(\infty)$, G_x is its own normalizer.
 - (b) If $(G_x)_0 = (G_y)_0$ for points $x, y \in M(\infty)$ then $G_x = G_y$.
- 2. Show that $M(\infty)$ under the angle metric is complete.
- 3. Show that $\angle(x, y) = \min(\pi, Td(x, y))$ for all $x, y \in M(\infty)$. Use this to show that the cone topology and Tits topology coincide on $F(\infty)$ where F is a maximal flat in M.
- 4. Study the symmetric space $M = M_n = SL_n/SO_n$ in depth:
 - (a) Show that if $p = gSO_n$ then the geodesics through p are $\gamma(t) = e^{tX}gSO_n = ge^{tY}SO_n$ for $gYg^{-1} = X$, with $X \in \mathfrak{p} = T_pM$ and Y a traceless symmetric matrix.
 - (b) Show that the maximal flats in M correspond to (unordered) line decompositions in \mathbb{R}^n .
 - (c) Let $p \in M$, and X a unit vector in $\mathfrak{p} = T_p M$. Consider

$$F_{t,\lambda}(X) = \{ v \in \mathbb{R}^n | \| e^{t(\lambda - X)} v \| \le \| v \| \}.$$

Extract a flag in \mathbb{R}^n associated to the geodesic $e^{tX}p$, with in addition a positive real number associated to each subspace in the

flag. This is called an *eigenvalue-flag pair*. Show that it depends only on the ideal point that X points to.

- (d) Show that the eigenvalue-flag pair gotten above coincides with: Let E_i be the λ_i -eigenspace of X. Set the *i*th subspace of a flag to be the direct sum of the first *i* eigenspaces, ordered so that larger λ_i come first.
- (e) Show that a Weyl chamber in M corresponds to a flag in \mathbb{R}^n .
- (f) Show that the choice of a Weyl chamber in a flat F corresponds to choosing an ordering of the line decomposition.
- (g) Show that any two ideal points lie in a common flat. When is that flat unique?
- (h) Given two regular ideal points x, y in $M(\infty)$, represented as eigenvalueflag pairs, find an easy way to calculate $\angle(x, y)$. What about singular points?
- (i) What is the Weyl group? How does it act on a flat? How many Weyl chambers are in a given flat? How many different types of parabolic subgroups are there? (Say, non-conjugate).
- (j) Find a geodesic γ with $F(\gamma)$ having a nontrivial non-Euclidean factor.