Symmetric Spaces Exercises Day 7

Max Riestenberg

June 5, 2018

Assume M is a symmetric space of noncompact type and $G=\operatorname{Isom}_{0}(M)$.

1. If $W(x)=W(g x)$ for some $g \in G$ and $x \in M(\infty)$ then $g x=x$. Use this to show that
(a) for every $x \in M(\infty), G_{x}$ is its own normalizer.
(b) If $\left(G_{x}\right)_{0}=\left(G_{y}\right)_{0}$ for points $x, y \in M(\infty)$ then $G_{x}=G_{y}$.
2. Show that $M(\infty)$ under the angle metric is complete.
3. Show that $\angle(x, y)=\min (\pi, T d(x, y))$ for all $x, y \in M(\infty)$. Use this to show that the cone topology and Tits topology coincide on $F(\infty)$ where F is a maximal flat in M.
4. Study the symmetric space $M=M_{n}=S L_{n} / S O_{n}$ in depth:
(a) Show that if $p=g S O_{n}$ then the geodesics through p are $\gamma(t)=$ $e^{t X} g S O_{n}=g e^{t Y} S O_{n}$ for $g Y g^{-1}=X$, with $X \in \mathfrak{p}=T_{p} M$ and Y a traceless symmetric matrix.
(b) Show that the maximal flats in M correspond to (unordered) line decompositions in \mathbb{R}^{n}.
(c) Let $p \in M$, and X a unit vector in $\mathfrak{p}=T_{p} M$. Consider

$$
F_{t, \lambda}(X)=\left\{v \in \mathbb{R}^{n}\left\|e^{t(\lambda-X)} v\right\| \leq\|v\|\right\} .
$$

Extract a flag in \mathbb{R}^{n} associated to the geodesic $e^{t X} p$, with in addition a positive real number associated to each subspace in the
flag. This is called an eigenvalue-flag pair. Show that it depends only on the ideal point that X points to.
(d) Show that the eigenvalue-flag pair gotten above coincides with: Let E_{i} be the λ_{i}-eigenspace of X. Set the i th subspace of a flag to be the direct sum of the first i eigenspaces, ordered so that larger λ_{i} come first.
(e) Show that a Weyl chamber in M corresponds to a flag in \mathbb{R}^{n}.
(f) Show that the choice of a Weyl chamber in a flat F corresponds to choosing an ordering of the line decomposition.
(g) Show that any two ideal points lie in a common flat. When is that flat unique?
(h) Given two regular ideal points x, y in $M(\infty)$, represented as eigenvalueflag pairs, find an easy way to calculate $\angle(x, y)$. What about singular points?
(i) What is the Weyl group? How does it act on a flat? How many Weyl chambers are in a given flat? How many different types of parabolic subgroups are there? (Say, non-conjugate).
(j) Find a geodesic γ with $F(\gamma)$ having a nontrivial non-Euclidean factor.

