Symmetric Spaces Exercises Day 8

Max Riestenberg

June 6, 2018

Assume M is a symmetric space of noncompact type and rank at least 2 and set $G = \text{Isom}_0(M)$.

- 1. We show that any two Weyl faces lie in a common apartment.
 - (a) Let γ be any geodesic of M and let w be a unit vector tangent to M at $\gamma(0)$ such that w and $\gamma'(0)$ are not collinear and span a 2plane of zero sectional curvature. Then there exists a maximal flat F in M such that γ is contained in F and w is tangent to F. Hint: the sectional curvature $K(u, v) = \langle R(u, v)v, u \rangle = \langle R_v(u), u \rangle$ up to a positive scalar. The curvature transformation $R_v : T_p M \to T_p M$ becomes $R_X = (\text{ad } X)^2$ on \mathfrak{p} .
 - (b) A Tits geodesic is a continuous curve $\sigma : [a, b] \to M(\infty)$ that is parameterized proportional to arclength and is locally distanceminimizing. It is minimal if $d(\sigma(a), \sigma(b))$ equals the length of σ . Now let σ be a minimal Tits geodesic between antipodal ideal points. Show that there exists a maximal flat containing σ . Hint: find a point realizing the angle, which must be the corner of a flat triangular sector by an earlier proposition. Then use part 1.
 - (c) Show that the same holds when the angle is strictly less than π , and moreover in this case the minimal Tits geodesic is unique.
- 2. Let W be a finite Coxeter group acting on a sphere S with no fixed points. Show that S has a natural simplicial complex structure.
- 3. Let τ_1, τ_2 be antipodal Weyl faces. Show that there exists a geodesic γ such that $P(\tau_1, \tau_2) = F(\gamma)$.

4. Let τ_1, τ_2 be antipodal Weyl faces. Show that $P_{\tau_1} \cap P_{\tau_2}$ act transitively on $P(\tau_1, \tau_2)$.