
INTRO TO HOMOLOGICAL ALGEBRA AND SPECTRAL SEQUENCES

MINICOURSE

RICHARD WONG

Abstract. The first three days of this course will be lectures on the basics of homological algebra with

an eye towards computations. Topics include diagram chasing, working with chain complexes, computing

homology and cohomology, using the Kunneth and universal coefficient theorems, and computing Ext and
Tor groups.

On Thursday and Friday, we will discuss spectral sequences, focusing in particular on the Kunneth and
Serre spectral sequences, which are also very useful for calculating homology / cohomology of topological

spaces. There will be a problem session from 1-2pm.

1. Monday

Let R be a commutative ring. We will develop homological algebra in the category of R-modules. That
is, we will construct the category Ch(R) of chain complexes of R-modules.

1.1. Objects

Definition 1.1. A chain complex of R-modules, X, is a sequence of maps (called differentials) of R-modules

· · · → Xn+1
dn+1−−−→ Xn

dn−→ Xn−1 → · · ·

such that dn ◦ dn+1 = 0 for all n.

Definition 1.2. A cochain complex of R-modules, Y , is a sequence of maps of R-modules

· · · → Y n−1
dn−1

−−−→ Y n
dn−→ Y n+1 → · · ·

such that dn ◦ dn−1 = 0 for all n.

Note that chain complexes have homological grading: the differential lowers degree, while cochain com-
plexes have cohomological grading: the differential raises degree.

The usual convention is that chain complexes that are bounded above: Xn = 0 for n < 0, and cochain
complexes that are bounded below: Y n = 0 for n < 0. Without the boundedness restrictions, the notions
are equivalent.

Example 1.3 Given an R-module M , we can regard it as a chain complex concentrated in degree 0.

Example 1.4 Given an R-module homomorphism f : M → N , we can regard it as a chain complex
concentrated in degrees 0 and 1.

Example 1.5 We can define a chain complex I to be the chain complex with R⊕2 in degree 0, generated
by elements [0] and [1], and a R in degree 1 with generator [I], and 0 everywhere else. The only non-trivial
differential sends d([I]) 7→ [0]− [1].

This is the “cylinder object” in Ch(R). It plays the analogous role that the interval [0, 1] does in the
category Top∗.

An element in the kernel of dk is called a cycle, and an element in the image of dk+1 is called a boundary.
Two cycles f, g are “homologous” if f − g is a boundary. Note that ker dk and imdk+1 are submodules ofXk,
and moreover we have that imdk+1 ⊆ ker dk ⊆ Xk thanks to our condition on the differentials.

Definition 1.6. We define the kth homology of a chain complex X to be the following abelian group:

Hk(X) = ker dk/imdk+1
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Similarly, we define the kth cohomology of a cochain complex Y to be the following abelian group:

Hk(Y ) = ker dk/imdk+1

Remember that the usual convention is that chain complexes that are bounded above: Xn = 0 for n < 0,
and cochain complexes that are bounded below: Y n = 0 for n < 0. This is because we prefer to have
homology (respectively cohomology) to live in positive degrees.

So again in the world of complexes, the difference in homology and cohomology is whether we are looking
at chain vs. cochain complexes.

Example 1.7 Let R = Z. Then R-modules are the same as abelian groups. Suppose that G is a finitely
generated abelian group. Then we can construct a chain complex C such that H0(C) = G

Write G in terms of generators and relations, and let C = 0→ Zn → Zm → 0.

Example 1.8 Let f : M → N be a morphism of R modules, considered as a chain complex C. Then
H0(C) = coker(f) and H1(C) = ker(f).

Example 1.9 A chain complex that has 0 homology is said to be exact.

1.2. Morphisms

Definition 1.10. A map of chain complexes f : X → X ′ is a sequence of maps of R-modules fn : Xn → X ′n
that commute with the differentials for all n. That is, we have the following commutative diagram for all n.

Xn Xn−1

X ′n X ′n−1

dn

fn fn−1

d′n

Therefore, we have that fk(imdk+1) ⊆ imd′k+1 and fk(ker dk) ⊆ ker d′k, and hence f induces a map on
homology: f∗ : Hk(X)→ Hk(X ′).

As always, we don’t care about all maps between chain complexes, we only care about maps up to some
equivalence relation. The question is: which equivalence relation should we take?

Definition 1.11. A chain homotopy h between maps f, g : X → X ′ is a sequence of maps of R-modules
hn : Xn → X ′n+1 such that we have the following commutative diagram for all n.

· · · Xn+1 Xn Xn−1 · · ·

· · · X ′n+1 X ′n X ′n−1 · · ·

f g f g
h

f g
h

Lemma 1.12. Chain homotopic maps induce the same homomorphism of homology groups.

Definition 1.13. Two complexes X,X ′ are said to be chain homotopic if there are chain maps f : X → X ′,
g : X ′ → X such that there are chain homotopies s : g ◦ f → idX and t : f ◦ g → idX′ .
f and g are said to be chain homotopy equivalent.

Lemma 1.14. Chain homotopy equivalent maps induce isomorphisms on homology.

However, this turns out to not be quite the right equivalence relation, as we will see in the exercises later
today. The notion of chain homotopy is a bit too strict.

When we consider chain complexes, we usually care about their homology groups. Therefore, we would
like a notion of equivalence that allows us to replace one chain complex with another one with the same
homology. This leads us to the notion of quasi-isomorphism.

Definition 1.15. A map of chain complexes f : X → X ′ is said to be a quasi-isomorphism if for each k,
the induced morphism on homology f∗ : Hk(X)→ Hk(X ′) is an isomorphism.

The two chain complexes are said to be quasi-isomorphic.

Remark 1.16. Quasi-isomorphism is not an equivalence relation: it is not symmetric, so we have to formally
add inverse maps through a process called localization.
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Remark 1.17. It is not enough to have two complexes with the same homology, we require also a map between
them that induces an isomorphism on homology.

Definition 1.18. A chain complex quasi-isomorphic to the 0 chain complex is said to be acyclic.

1.3. Constructions

Definition 1.19. Given two chain complex of R-modules X and Y , then we can form their tensor product
(over R), denoted X ⊗ Y , in the following way:

(X ⊗ Y )n =
∑

p+q=n

Xp ⊗R Yq

and the differential d is given by

d(x⊗ y) = dX(x)⊗ y + (−1)px⊗ dY (y)

for x ∈ Xp and y ∈ Yq. One can check that this sign convention ensures that d ◦ d = 0.

Example 1.20 Given a chain complex of R-modules X and an R-modules M , we can then form the chain
complex X ⊗RM . This has in the nth degree the R-module Xn ⊗M , and differential dX ⊗ idM .

The homology Hn(X ⊗R M) is called the homology of X with coefficients in M , sometimes denoted
Hn(X;M).

Definition 1.21. Given a chain complex of R-modules X∗, we define the dual cochain complex D(X) in
the following way:

D(X)n = HomR(Xn, R)

dn = (−1)nHomR(dn+1, id)

.
On elements, given an R-module map f : Xn → R and an element x ∈ Xn+1, we have (dnf)(x) =

(−1)nf(dn(x)).

Example 1.22 Note that in general, Hn(D(X)) � Hom(Hn(X),Z). (destroys torsion information)

In general, given an R-module M , we can define in the same way a cochain complex Hom(X,M), and we
denote the cohomology Hn(Hom(X,M)) by Hn(X;M).

Definition 1.23. Given a chain map f : X → Y , the mapping cone of f is the complex C(f) defined by

C(f)n = Xn−1 ⊕ Yn
and differential

d(x, y) = (−dX(x), dY (y)− f(x))

if f is a cofibration(inclusion), then C(f) is the same thing as the quotient. It has the universal property
of being a pushout over a point, and gives a LES in homology. (detects quasi-isomorphisms)

Example 1.24 We construct cellular homology by constructing the cellular chain complex CW•(X) for a
CW complex X..

We take CWn(X) to be the free abelian group Hn(Xn, Xn−1), which has generators the n-cells of X.

The boundary map sends a cell dn(eαn) =
∑

deg(χαβn eβn−1), where χαβn is the map induced by the attaching

map Sn−1 → Xn−1 composed with the quotient map Xn−1/(Xn−1 \ eβn−1) ∼= Sn−1.

Example 1.25 We construct singular homology by constructing the singular complex C•(X).
We take Cn(X) to be the free abelian group generates by all singular n-simplices on a topological space

X. That is, maps σn : ∆n → X.
The boundary map is restriction onto the faces of the simplex:

δn(σn) =

n∑
k=0

(−1)k[p0, · · · , pk−1, pk+1, · · · , pn]
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Example 1.26 We obtain Hn(X;G) for G an abelian group by taking the homology of C•(X)⊗G.

Example 1.27 We obtain Hn(X;G) for G an abelian group by taking the dual cochain complex of C•.

2. Monday Exercises

Exercise 2.1. Prove the five lemma. In the diagram below, if the rows are exact, m and p are isomorphisms,
l is an epimorphism, and q a monomorphism, then n is an isomorphism.

A B C D E

A′ B′ C ′ D′ E′

f

l

g

m

h

n

j

p q

f ′ g′ h′ j′

Exercise 2.2. Prove the splitting lemma: For any short exact sequence of R-modules 0→ A
f−→ B

g−→ C → 0,
then the following are equivalent:

(1) There exists a map u : B → A such that u ◦ f = idA.
(2) There exists a map v : C → B such that g ◦ v = idC .
(3) B ' A⊕ C.

Exercise 2.3. Show that the splitting lemma does not hold in the category of groups. (Hint: Consider the

SES of groups 0→ A3
i−→ S3

det−−→ Z/2→ 0)

Exercise 2.4. Watch the 1980 film, “It’s My Turn”, an American romantic comedy-drama film starring Jill
Clayburgh, Michael Douglas and Charles Grodin.

Then prove the snake lemma.

A B C 0

0 A′ B′ C ′

f g h

In the diagram above, if the rows are exact, then there is an exact sequence

ker(f)→ ker(g)→ ker(h)→ coker(f)→ coker(g)→ coker(h)

Exercise 2.5. Show that a short exact sequence 0→ A→ B → C of chain complexes of R-modules givess
rise to a long exact sequence of homology groups

· · · → Hk(A)→ Hk(B)→ Hk(C)→ Hk−1(A)→ Hk−1(B)→ Hk−1(C)→ Hk−2(A)→ · · ·

Exercise 2.6. Given a cochain complex, you can form its dual chain complex. Show that a chain complex
is not necessarily quasi-isomorphic to its double dual (the dual of the dual chain complex.)

Hint: Consider the chain complex of abelian groups

· · · → 0→ Z/2→ 0 · · ·

Exercise 2.7. Show that if k is a field, and X is a chain complex of k-modules, then

H∗(D(X)) ∼= D(H∗(X))

(Hint: Show that D(−) := Hom(−, k) is an exact functor. That is, it preserves kernels and cokernels.
Then show that exact functors commute with (co)homology.

Exercise 2.8. If A is a bounded chain complex of finitely generated abelian groups (that is, all but finitely
many An are 0, and all the An are finitely generated), then we can define the Euler characteristic

χ(A) =
∑

(−1)nrank(An)

Show that Euler characteristic can also be computed on the level of homology, that is

χ(A) =
∑

(−1)krank(Hk(A))
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Exercise 2.9. Show that there exists a chain homotopy equivalence f : X → X ′ where fn : Xn → X ′n is
not an isomorphism by considering the chain complexes

· · · → Z/4 ·2−→ Z/4 ·2−→ Z/4 ·2−→ · · ·
· · · → 0→ 0→ 0→ 0 · · ·

Exercise 2.10. Show that quasi-isomorphism is not symmetric by considering the chain complexes of abelian
groups

· · · → 0→ Z ·2−→ Z→ 0 · · ·
· · · → 0→ 0→ Z/2→ 0 · · ·

This also gives an example of a quasi-isomorphism that is not a chain homotopy equivalence.

Exercise 2.11. Let R = k[x, y]. Show that the chain complexes of R-modules

0→ R⊕R h−→ R→ 0

0→ R
0−→ k → 0

have the same homology but are not quasi-isomorphic. The map h is defined by

h(f(x, y), g(x, y)) = xf(x, y) + yg(x, y)

Exercise 2.12. Show that the category of chain complexes of R-modules up to quasi-isomorphism (that is,
you have the same objects of Ch(R), but you invert all the quasi-isomorphisms) is not abelian, but is instead
triangulated. This category is called the derived category of R.

(Hint: certain kernels/cokernels do not necessarily exist).

3. Tuesday

3.1. Universal coefficients in homology

Today we will work exclusively over a PID R.
We will cover theorems that allow us to compute homology and cohomology groups of a complex (usually

with coefficients) given knowledge of other homology/cohomology groups. In particular, we will compute
H∗(X;M) given H∗(X), H∗(X ⊗ Y ) given H∗(X)⊗R H∗(Y ), and H∗(X;M) given H∗(X).

First, we have a map α : H∗(X)⊗H∗(X)→ H∗(X ⊗ Y ) defined by

α([x]⊗ [y]) = [x⊗ y]

Theorem 3.1 (Universal Coefficient Theorem for Homology). Let M be a module over a principal ideal
domain R. Let C be a chain complex of flat (read:free) R-modules. We would like to compute the homology
groups Hk(C ⊗RM) of the chain complex C ⊗RM .

For each k, there is a natural short exact sequence of R-modules

0→ Hk(C)⊗RM
α−→ Hk(C ⊗RM)→ TorR1 (Hk−1(C),M)→ 0

Corollary 3.2 (Universal Coefficient Theorem for Integral Homology). Let X be a topological space and G
be an abelian group, and suppose we know H∗(X) := H∗(X;Z). Then one can compute Hk(X;G) for each
k with the natural short exact sequence of abelian groups

0→ Hk(X)⊗G α−→ Hk(X;G)→ Tor(Hk−1(X), G)→ 0

Remark 3.3. In fact, these short exact sequences split, although the splitting is not natural, as we will see
in the exercises below.

How do we compute the group TorR1 (Hk−1(C),M)? Given an R-module M , we can construct a short
exact sequence

0→ F1 → F0 →M → 0

where F0 and F1 are free modules. We choose F0 → M to be a surjection, and F1 to be the kernel of that
surjection. Since R is a PID, and F1 is a submodule of a free module over R, it is also free.

sketch idea: M finitely generated, have the theorem describing it. Take F0 to be free on cyclic generators.
proof of submodule, induct on dimension of free module (submodule of R is ideal), A → A(a) is injective.
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Induction, split An+1 = A ⊕ An, project on to An part. Then M surjection onto free module π(M), hence
M ∼= π(M)⊕ kerπ

Then we tensor with N and obtain an exact sequence

0→ TorR1 (M,N)→ F1 ⊗N → F0 ⊗N →M ⊗N → 0

This is special to the case that R is a PID. You will get more Tor groups over other rings. This measures
the failure of the functor (−)⊗N to be exact.

Proposition 3.4. We have the following properties of Tor, Hatcher-style.

(1) TorR1 (⊕iMi, N) ∼= ⊕iTorR1 (Mi, N)

(2) TorR1 (M,N) = 0 if M (or N) is free.

(3) Tor(Z/n,A) = ker(A
·n−→ A) for A an abelian group.

(4) For each short exact sequence 0→ A→ B → C → 0, we have a natural exact sequence

0→ TorR1 (M,A)→ TorR1 (M,B)→ TorR1 (M,C)→M ⊗A→M ⊗B →M ⊗ C → 0

(5) TorR1 (M,N) ∼= TorR1 (N,M).

3.2. Künneth Theorem

We can in fact ask a more general question:

Theorem 3.5 (Künneth). Let R be a principal ideal domain, Let C be a chain complex of flat (read:free)
R-modules, and D be any chain complex. We would like to compute the homology groups Hk(C ⊗R D).

For each k, there is a natural short exact sequence of abelian groups

0→
⊕
i+j=k

Hi(C)⊗R Hj(D)→ Hk(C ⊗R D)→
⊕

i+j=k−1

TorR1 (Hi(C), Hj(D))→ 0

Corollary 3.6 (Künneth Formula). Let X and Y be topological spaces and F be a field. Then for each
integer k we have a natural isomorphism⊕

i+j=k

Hi(X;F )⊗Hj(Y ;F ))→ Hk(X × Y ;F )

For a general ring R, we have a Kunneth spectral sequence with E2 page TorRp (Hq1 , Hq2)⇒ Hp+q(X×Y ).
We will discuss this in later lectures.

Theorem 3.7 (Eilenberg-Zilber). Given two topological spaces X and Y , we have an isomorphism of singular
chain complexes (over R)

C∗(X × Y ) ∼= C∗(X)⊗ C∗(Y )

3.3. Universal coefficients in cohomology

First, we define a map α : Hk(C;M)→ HomR(Hk(C),M) which is defined for each k by α([f ])([x]) = f(x)
for a cohomology class represented by a cocycle f : Xn →M and cycle x ∈ Hn(X).

Theorem 3.8 (Universal Coefficient Theorem for Cohomology). Let M be a module over a principal ideal
domain R. Let C be a chain complex of free R-modules. We would like to compute the cohomology groups
Hk(C;M) of the cochain complex Hom(Cn,M).

For each k, there is a natural short exact sequence of R-modules

0→ Ext1R(Hk−1(C),M)→ Hk(C;M)
α−→ HomR(Hk(C),M)→ 0

Corollary 3.9 (Universal Coefficient Theorem for Integral Cohomology). Let X be a topological space and
G be an abelian group, and suppose we know H∗(X) := H∗(X;Z). Then one can compute Hk(X;G) for
each k with the natural short exact sequence of abelian groups

0→ Ext(Hk−1(X), G)→ Hk(X;G)→ Hom(Hk(X), G)→ 0

Remark 3.10. In fact, these short exact sequences again split, although the splitting is not natural, as we
will see in the exercises below.
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How do we compute the group ExtR1 (Hk−1(C),M)? Given an R-module M , we can construct a short
exact sequence

0→ F1 → F0 → Hk−1(C)→ 0

where F0 and F1 are free modules.
Then we apply Hom(−, N) to get the dual cochain complex, and we obtain an exact sequence

0→ Hom(Hk−1(C), N)→ Hom(F0,M)→ Hom(F1,M)→ ExtR1 (Hk−1(C),M)→ 0

Again, this is special to the case that R is a PID. You will get more Ext groups over other rings. This
measures the failure of the functor Hom(−, N) to be exact.

We can also compute Ext by applying Hom(Hk−1(C),−) to the SES 0→ F ′1 → F ′0 →M → 0.

Proposition 3.11. We have the following properties of Ext, Hatcher-style.

(1) Ext1R(⊕iMi, N) ∼= ⊕iExt1R(Mi, N)
(2) Ext1R(M,N) = 0 if M is free (or in general, projective).
(3) Ext(Z/n,A) = A/nA for A an abelian group.
(4) For each short exact sequence of R-modules 0→ A→ B → C → 0, we have a natural exact sequence

0→ Hom(C,N)→ Hom(B,N)→ Hom(A,N)→ Ext1R(C,N)→ Ext1R(B,N)→ Ext1R(A,N)→ 0

(5) Similarly, for each short exact sequence of R-modules 0 → A → B → C → 0, we have a natural
exact sequence

0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C)→ Ext1R(M,A)→ Ext1R(M,B)→ Ext1R(M,C)→ 0

4. Tuesday Exercises

Exercise 4.1. We saw the Kunneth/Universal Coefficient theorems about how to compute H∗(X;M) given
H∗(X), H∗(X ⊗ Y ) given H∗(X)⊗R H∗(Y ), and H∗(X;M) given H∗(X).

State and prove the analogous theorems Kunneth/Universal Coefficient theorems for cohomology. (com-
puting H∗(X;M) given H∗(X), H∗(X ⊗ Y ) given H∗(X)⊗R H∗(Y ), and H∗(X;M) given H∗(X))

Exercise 4.2. Prove the following properties of Tor and Ext.

(1) TorR1 (⊕iMi, N) ∼= ⊕iTorR1 (Mi, N)

(2) TorR1 (M,N) = 0 if M (or N) is free.

(3) Tor(Z/n,A) = ker(A
·n−→ A) for A an abelian group.

(4) For each short exact sequence 0→ A→ B → C → 0, we have a natural exact sequence

0→ TorR1 (M,A)→ TorR1 (M,B)→ TorR1 (M,C)→M ⊗A→M ⊗B →M ⊗ C → 0

(5) TorR1 (M,N) ∼= TorR1 (N,M).

(1) ExtR1 (⊕iMi, N) ∼= ⊕iTor(Mi, N)

(2) ExtR1 (M,N) = 0 if M is free (or in general, projective).
(3) Ext(Z/n,A) = A/nA for A an abelian group.
(4) For each short exact sequence of R-modules 0→ A→ B → C → 0, we have a natural exact sequence

0→ Hom(C,N)→ Hom(B,N)→ Hom(A,N)→ ExtR1 (C,N)→ ExtR1 (B,N)→ ExtR1 (A,N)→ 0

(5) Similarly, for each short exact sequence of R-modules 0 → A → B → C → 0, we have a natural
exact sequence

0→ Hom(M,A)→ Hom(M,B)→ Hom(M,C)→ ExtR1 (M,A)→ ExtR1 (M,B)→ ExtR1 (M,C)→ 0

Exercise 4.3. Suppose that X is a topological space such that Hk(X) is free and finitely generated for all
k. Prove that Hk(X) ∼= Hk(X).

(a) Compute Hk(CP∞) for all n.
(b) Compute Hk(Sn) for all k, n.

Exercise 4.4. Suppose that R is a field. Then show that H∗(X) ⊗R M ∼= H∗(X;M), and H∗(X;M) ∼=
Hom(H∗(X),M).
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Exercise 4.5. Compute Hk(RP∞;Z/2) for all k.

Exercise 4.6. Compute Hk(RP∞;Z/m) for all k and for any odd integer m ≥ 3.

Exercise 4.7. Compute Hk(RP∞ × RP∞;Z) for all k.

Exercise 4.8. Compute Hk(RP∞ × RP∞;Z/2) for all k.

Exercise 4.9. Compute Hk(RP∞;Z) for all k.

Exercise 4.10. Compute Hk(RP∞;Z/2) for all k.

Exercise 4.11. Let G be an abelian group. Let M(G,n) be a Moore space, that is to say it satisfies

H̃k(M(G,n)) =

{
G k = n
0 else

(a) Construct a CW complex M(Z/m, n) having 3 cells.
(b) Consider the map f : M(Z/m, n)→ Sn+1 that collapses the n-skeleton. Use this map to show that the

splitting in the Universal Coefficient Theorem is not natural.
(c) Consider the map f × id : M(Z/m, n)×M(Z/m, n)→ Sn+1 ×M(Z/m, n). Use this map to show that

the splitting in the Künneth Theorem is not natural.

5. Wednesday

Today we talk about Tor and Ext over general rings, not just PIDs.
First we discuss flat, projective, injective, flat modules:

Definition 5.1. A flat module M over a ring R is a module such that −⊗RM preserves exact sequences.
(always right exact)

Lemma 5.2. Free modules are flat.

Theorem 5.3. The following are equivalent definitions of a projective module:

(i)

M

P N

f

g

h

(ii) every short exact sequence of the form 0→ A→ B → P → 0 splits.
(iii) There is a free module F and a module Q such that P ⊕Q = F .
(iv) Hom(P,−) is an exact functor. (always left exact, but right exact if P is projective.)

Lemma 5.4. Any projective module is flat.
Free modules are flat, direct sums and summands of flat modules are flat. Projectives are direct summands

of free modules.

Definition 5.5. A projective resolution of an R module M is a chain complex such that the following
complex is exact

· · ·Xi+1 → Xi
di−→ · · ·X0

ε−→→M → 0

Proposition 5.6. Every R-module has a projective (free!) resolution. This is unique up to chain homotopy
(and hence quasi-isomorphism) via property of projective modules.

We can now define Tor:

Definition 5.7. Let M , N be R-modules, and choose a projective (flat) resolution X →M . Then

TorR∗ (M,N) := H∗(X ⊗R N)

Proposition 5.8. We have the following properties of Tor :

(1) TorRn (M,N) = 0 for n < 0.

(2) TorR0 (M,N) = M ⊗R N .
(3) we can also resolve N instead to compute Tor.
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Tor are the left derived functors of ⊗M , which is right exact. This is what we mean when we say that
Tor measures the failure of −⊗M to be exact.

Example 5.9 For R a PID, we see that TorRn (M,N) = 0 for n > 0.

Dually, we can define injective modules.

Theorem 5.10. The following are equivalent definitions of an injective module:

(i)

M

I N

f
h

g

g dashed

(ii) every short exact sequence of the form 0→ I → A→ B → 0 splits.
(iii) if submodule, then direct summand
(iv) Hom(−, I) is an exact functor. (always left exact, but right exact if I is injective.)

Definition 5.11. An injective resolution of an R module N is a cochain complex Y such that the following
complex is exact

0→ N
η−→ Y 0 · · ·Y i → Y i+1 → · · ·

Proposition 5.12. Every R-module embeds as a submodule of an injective R-module.
N ↪→ HomZ(R,N) ↪→ HomZ(R,D)
for some homomorphism N → D of abelian groups, where D is divisible (aka an injective Z-module,

Baer’s criterion).

Proposition 5.13. Every R-module has an injective resolution. This is unique up to chain homotopy (and
hence quasi-isomorphism) via property of injective modules.

This is not functorial!

We can now define Ext:

Definition 5.14. Let M , N be R-modules, and choose a projective (flat) resolution X →M . Then

Ext∗R(M,N) := H∗(Hom(X,N))

Alternatively, choose an injective resolution N → Y . Then

Ext∗R(M,N) := H∗(Hom(M,Y ))

Proposition 5.15. We have the following properties of Ext :

(1) ExtnR(M,N) = 0 for n < 0.
(2) Ext0R(M,N) = Hom(M,N).
(3) ExtnR(M,N) = 0 for M projective or N injective.

Ext are the right derived functors of Hom(−, N) or Hom(M,−), which are left exact.

Example 5.16 For R a PID, we see that ExtnR(M,N) = 0 for n > 0.

Definition 5.17. In particular, this is very interesting when we take R = kG, the group ring of a (finite)
group G. k is a commutative ring, usually a Dedekind domain. We will think of k as a field or as Z. Let
M be a kG-module, and we then define group cohomology to be the right derived functors of Hom(k,−),
where k is the trivial kG-module.

Hn(G,M) := ExtnkG(k,M)

We can also define group homology in the same way:

Hn(G,M) := TorkGn (k,M)

We can compute these groups by taking a projective resolution of Z: In this case, we may use the bar
construction:
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Example 5.18 We have a resolution of Z given by the following complex, where Fn =
⊕

g∈Gn ZG{g},
the free ZG module on Gn. This is the same as Z[Gn+1] with diagonal action (free module with basis
(1, g1, g1g2, · · · , g1g2 · · · gn). differential is alternating sum omit ith entry.

The differential is given by a map ∆ : Gn → Fn−1; the augmentation map
∑
g∈G cg[g] 7→

∑
g∈G cg.

d1(
∑
g∈G xi[gi]) =

∑
x([gi] − [1]). The rest of the maps are given by dk(

∑
i xi(gi) =

∑
i xi∆(gi),

∆j(g1, · · · , gj) = [g1](g1, · · · gj) + alternatingsum,multiply2

Example 5.19 This is big and very messy, and sometimes we can find a nice minimal resolution, such as
when we have a cyclic group.

ZG→ ZG→ Z→ 0

·(g − 1) is first map, followed by
∑N−1
i=0 gi, etc. two step resolution.

5.1. Other resolutions

Example 5.20 Koszul resolution for regular sequence R/(s1, · · · , sn)

6. Wednesday Exercises

Exercise 6.1. Where does the term Ext come from? Show that Ext1R(M,N) is isomorphic to the group of
extensions up to equivalence of M by N , with addition given by the Baer sum:

Definition 6.2. If M and N are R-modules, then we say an extension of M by N is a SES of R-modules:

0→ N → E →M → 0

Definition 6.3. Two extensions 0→ N → E →M → 0 and 0→ N → E′ →M → 0 are equivalent if there
is a commutative diagram, middle is isomorphism

Proposition 6.4. The set of equivalence classes of extensions has a group structure coming from Baer
sum. Given two extensions 0 → N → E → M → 0 and 0 → N → E′ → M → 0, form the SES
0→ N ⊕N → E ⊕E′ →M ⊕M → 0. Pull back along the diagonal map M →M ⊕M , and then push out
along the sum map A⊕A→ A to obtain the Baer sum 0→ N → E′′ →M → 0

Exercise 6.5. Generalize the previous exercise to show that ExtnR(M,N) is isomorphic to the group of
extensions of M by N of length n up to equivalence.

Definition 6.6. If M and N are R-modules, then we say an extension of M by N of length n is an exact
sequence of R-modules:

0→ N → En−1 → · · ·E0 →M → 0

Exercise 6.7. Show that we have an associative and unital map called the Yoneda product:

ExtnR(N,P )⊗ ExtmR (M,N)→ Extm+n
R (M,P )

by considering the isomorphism bewteen ExtnR(M,N) and the group of extensions of M by N of length
n up to equivalence.

Exercise 6.8. Let M be a ZG-module. Show that H0(G;M) = MG, the G-fixed points of M . Also show
that H0(G;M) = MG, the coinvariants of M . In other words, MG is the quotient of M by the submodule
generated by elements of the form g ·m−m.

Exercise 6.9. Show that if k is a field of characteristic p, and G is Z/p, then

H∗((G)n, k) =

{
Fp[x1, · · · , xn] |xi| = 1, p = 2
Λ[x1, . . . xn]⊗ Fp[y1, · · · , yn] |xi| = 1, |yi| = 2, p 6= 2

7. Thursday

Today we will begin discussing spectral sequences, an extremely useful computational tool.
We will first discuss the spectral sequence associated to a double complex, and then see how one can

obtain the Kunneth and Universal coefficient spectral sequences.
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Definition 7.1. A double chain complex is a collection of R-modules with rightward and downward differ-
entials that commute.

· · · Xi+1,j+1 Xi,j+1 Xi−1,j+1 · · ·

· · · Xi+1,j Xi,j Xi−1,j · · ·

· · · Xi+1,j−1 Xi,j−1 Xi−1,j−1 · · ·

dH

dV

dH

dV dV

dH

dV

dH

dV dV

dH dH

Definition 7.2. The total complex of a double chain complex X is a chain complex defined by

(Tot(X))n =
⊕
i+j=n

Xi,j

with differential

d(Xi,j) := dV (Xi,j) + (−1)jdH(Xi,j)

Example 7.3 Let f : X → Y be a map of chain complexes. Consider the double complex given by

· · · Xi+1 Xi Xi−1 · · ·

· · · Yi+1 Xi Xi−1 · · ·

fi+1 fi fi−1

Then the total complex is chain homotopic to the mapping cone of f , C(f).

Example 7.4 Let M be a module over a ring R. Let C be a chain complex of free R-modules. We would
like to compute the cohomology groups Hk(C;M) of the cochain complex Hom(Cp,M).

Take an injective resolution of M → I and then Hom(Cp, Iq) is a double complex.

Example 7.5 Let M and N be a module over a ring R, with projective resolutions of P and Q respectively.
We can form a double complex P ⊗Q.

Our goal is often to compute the homology of the total complex.
The naive thing to do is to compute HH(HV (X)). But notice that we can also compute HV (HH(X)),

and we have seen that these two things are not necessarily the same. The question is then, how are these
things related, and how are they related to the homology of the total complex?

Example 7.6 Let M be a module over a ring R. Let C be a chain complex of free R-modules, and let
M → I be an injective resolution and then Hom(Cp, Iq) is a double complex.

If we take the horizontal homology, since Iq is injective, then Hom(−, Iq) is exact. Therefore, it commutes
with taking the homology, so

HH(Hom(Cp, Iq)) ∼= Hom(Hp(C), Iq)

Therefore, then when we take the vertical homology, we obtain

HV (HH(Hom(Cp, Iq))) ∼= HV (Hom(Hp(C), Iq)) := Extq(Hp(C),M)

On the other hand, if we take the vertical homology first, since Cp is free (or projective), we observe that
therefore Hom(Cp,−) is exact, and so we have that

HV (Hom(Cp, Iq)) =

{
0 q > 0
Hom(Cp, G) q = 0

Therefore, when we take the horizontal homology, we obtain

HH(HV (Hom(Cp, Iq))) =

{
0 q > 0
Hp(C;G) q = 0

Example 7.7 Let M and N be a module over a ring R, with projective resolutions of P and Q respectively.
We can form a double complex Pp ⊗Qq.

11



If we take the horizontal homology, since Qq is projective, it is also flat, and hence ⊗Qq is exact. Hence
it commutes with taking the homology, so

HH(P ⊗Q) =

{
0 p > 0
M ⊗Qq p = 0

Then when we take the vertical homology, we obtain

HV (HH(P ⊗Q)) =

{
0 p > 0
Torq(M,N) p = 0

Similarly, if we take the vertical homology, since Pp is projective, it is also flat, and hence ⊗Pp is exact.
Hence

HV (P ⊗Q) =

{
0 q > 0
Pp ⊗N q = 0

Then when we take the horizontal homology, we obtain

HH(HV (P ⊗Q)) =

{
0 q > 0
Torp(N,M) q = 0

The answer as to how these two ways of computing the homology comes to us through spectral sequences.

Definition 7.8 (fake). A spectral sequence is a sequence of pages Ep,qr along with differential dr : Ep,qr →
Ep+r,q+r−1r such that Er+1

∼= ker(dr)/im(dr) squares to zero
Under good conditions, this stabilizes to an E∞ page, which hopefully contains information about some

graded object H∗ that we want to understand.
What this means that there is some exhaustive filtration on H∗, denoted F∗H∗ such that Ep,q∞

∼=
FpHp+q/Fp−1Hp+q.

(filtration by p+ q = k, E0,k to Ek,0)
That is, we can only determine what we want up to extensions.

Always subquotient of E0 page, in our case it is first quadrant, and note spacing of differentials.

Theorem 7.9. Given a double chain complex D, there is a homological spectral sequence with

E2 ∼= HH(HV (D))

which converges under mild conditions to the

H∗(Tot(D))

In particular, if this spectral sequence is afirst quadrant, then it converges.

Example 7.10 Let M be a module over a ring R. Let C be a chain complex of free R-modules, and let
M → I be an injective resolution.

Then we have a first quadrant spectral sequence coming from the double complex Hom(Cp, Iq), with

E2 ∼= Extq(Hp(C),M)

converging to
H∗(C;G)

You can recover the UCT for a PID case.

Example 7.11 Tor is symmetric.

Example 7.12 Prove the Snek lemma (arrows going up, horizontal tells us 0. figure out E1, then know E2

looks like, and what the maps must be so tells us exactness and iso of coker and ker

8. Thursday Exercises

Exercise 8.1. Formulate the Künneth spectral sequence, generalizing the Künneth theorem that we saw
on Tuesday:

Theorem 8.2 (Künneth). Let R be a principal ideal domain, Let C be a chain complex of flat (read:free)
R-modules, and D be any chain complex. We would like to compute the homology groups Hk(C ⊗R D).

12



For each k, there is a natural short exact sequence of abelian groups

0→
⊕
i+j=k

Hi(C)⊗R Hj(D)→ Hk(C ⊗R D)→
⊕

i+j=k−1

TorR1 (Hi(C), Hj(D))→ 0

(Hint: it arises as a certain double complex).

Exercise 8.3. Use the spectral sequence of a double complex to prove the five lemma.

Exercise 8.4. Use the spectral sequence of a double complex to show that a short exact sequence of
complexes induces a long exact sequence in cohomology

Exercise 8.5. Use the spectral sequence of a double complex to show that given a map f : X → Y of
complexes, then the cone of f , C(f), fits into a long exact sequence in homology.

Exercise 8.6. Show that if D is a first quadrant double complex, and if either all rows or all columns are
exact, then so is Tot(D).

Exercise 8.7. Figure out how a cohomological spectral sequence of double cochain complexes should look
like, and use it to prove the other forms of the Universal Coefficient Theorems seen in the Tuesday exercises.

9. Friday

Today we’ll talk about the Leray-Lyndon-Hochschild-Serre Spectral Sequence. This is a spectral sequence
that tells us homological/cohomological information about a fibration of topological space.

Definition 9.1. A map of (CW complexes) topological spaces E
f−→ B is called a Serre fibration if it satisfies

homotopy lifting for all cell complexes K:

K E

K × I B

i

g

f

1 7→n

l

We denote the fiber of f by F := π−1(b), and write F → E → B.

Example 9.2 Fibrations generalize the notion of a fiber bundle: except the fibers are only homotopy
equivalent (no local cartesian, but allows movement across fibers).

Example 9.3 Path space fibration ΩSn → Map∗(I,X)→ X.

Example 9.4 G,H Lie groups, H closed, fibration H → G→ G/H.

Proposition 9.5. Any map f : X → Y can be decomposed into the composition of homotopy equivalence

followed by a Serre fibration. Middle space is pullback of Y I → Y
f←− X.

Proposition 9.6. π(B) acts on F .
like deck transformation, loops in X lift to a path representing it in E. acts on E, and acts on F by

permuting it.

this induces an action on singular n-chains on E by post composition. This makes Cn(E) and Cn(F ) a
Zπ(X) module, so we need to define co/homology groups with local coefficients Hn(E;M), Hn(E;M) in the
usual way by taking hom/tensor with a Zπ(X) module M but with the chains of the universal cover.

Proposition 9.7. If M has a trivial Zπ(X) structure, then Hn(X;M) is just ordinary homology with

coefficients in M . for a simplex, lifts (of Cn(X) to Cn((̃X)) form an orbit of π, and these are identified (can
multiply by element and get same thing).

The spectral sequence will mostly go through if we work with simple fibrations of (cubical chains) CW
complexes F → E → B, where π(B) acts trivially.

Proposition 9.8. The reason we need a Serre fibration is because a fibration induces a long exact sequence
of homotopy groups

πn(F )→ πn(E)→ πn(B)→ πn−1(F ) · · · → π0(E)
13



Theorem 9.9 (Homological Serre Spectral Sequence). Given a Serre fibration F → E → B and a Z[π(B)]-
module M , there is a spectral sequence

E2
p,q = Hq(B;Hq(F ;M))⇒ Hp+q(E;M)

with differential dr : Erp,q → Erp−r,q+r−1
filtration on C∗(E) by FpC∗(E) singular chains supported in π−1(Bp). So associated graded is C∗(π−1(Bp),π−1(Bp−1))

but skeleton quotient is wedge over Sp, so wedge of copies of Sp ∧ F+. So Hq(F ) over number of cells, so
Cp(B)⊗Hq(F ) isomorphic as chain complexes to E1 term

Theorem 9.10 (Cohomological Serre Spectral Sequence). Given a Serre fibration F → E → B and a
Z[π(B)]-module M , there is a spectral sequence

Ep,q2 = Hq(B;Hq(F ;M))⇒ Hp+q(E;M)

with differential dr : Ep,qr → Ep+r,q−r+1
r

this has more structure since H∗ is a graded ring (it is a SS of DGAs).

Example 9.11 S1 is K(Z, 1), compute H∗(K(Z, 2). Path space fibration, rows 0,1, only lower left survives,
so d2 must be iso. so Z in even degrees, 0 for odd
K(Z, 2) is CP∞.

Example 9.12 Homology of ΩSn from path space fibration.

Example 9.13 Consider fibration U(n− 1) → U(n) → S2n−1. U(n) (conjugate transpose is inverse : g in
gln(C) that preserve inner product) acts transitively on S2n−1 ∈ Cn. Pick stabilizer of vector for fiber.

We know U(1) = S1, so induct on n. differentials are zero for degree reasons

10. Friday Exercises

Exercise 10.1. Show that the cohomology of X with local coefficients in Z[π(X)] is isomorphic to the

cohomology of the universal cover of X, X̃. That is,

Hn(X;Z[π(X)]) ∼= Hn(X̃)

Exercise 10.2. Show that Hn(G; k) ∼= Hn(BG; k).

Exercise 10.3. Let 1 → N → G → G/N → 1 be a SES of groups, and let M be a G-module (M is an
abelian group with a G-action that distributes over addition).

Show that we have the Lyndon-Hochschild-Serre spectral sequence, with

E2
p,q = Hq(G/N ;Hq(N ;M))⇒ Hp+q(G;M)

Exercise 10.4. Show that a (Serre) fibration F → E → B induces a long exact sequence of homotopy
groups

πn(F )→ πn(E)→ πn(B)→ πn−1(F ) · · · → π0(E)

Exercise 10.5. Prove(recover) the Hurewicz isomorphism using the path fibration.

Exercise 10.6. Prove(recover) the Eilenberg-Zilber Theorem.

Exercise 10.7. Play around with the fibration Sn → Dn → Sn+1.

Exercise 10.8. Play around with the Hopf fibration S1 → S3 → S2.

Exercise 10.9. Compute the homology and cohomology of the degree p map from Sn → Sn. (assuming we
have replaced it with a Serre fibration).

Exercise 10.10.

Definition 10.11. Let V2(Rn+1) be the space of orthogonal pairs of vectors in Rn+1.

(1) Show we have a Serre fibration S2 → V2(Rn+1)→ Sn

(2) Compute H∗(V2(Rn+1)).
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