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These are notes for a Summer 2020 minicourse following the paper "The Yang-Mills
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Notation and Conventions

We use Einstein summation notation, i.e. indices that appear on the top and bottom of
an expression are implicitly summed over. For example

aidxi = ∑
i

aidxi

For a smooth manifold X, we let Ωk
X denote the space of differential k-forms. When X is

a complex manifold, we let Ak
X denote the space of smooth complex-valued k-forms, and

A
p,q
X the space of smooth (p, q)-forms. We reserve Ωk

X and Ωp,q
X for the spaces of holomor-

phic k and (p, q)-forms respectively.

1. Principal Bundles and Connections

Good references for this material would be [9] and [12]

Fix a closed manifold X (compact and without boundary) and a Lie group G.

Definition 1.1. A principal G-bundle is a fiber bundle π : P → M with a smooth right G
action such that:

(1) The action of G preserves the fibers of π, and gives each fiber Px := π−1(x) the
structure of a right G-torsor, i.e. the action of G on Px is free and transitive.

(2) For every point x ∈ X, there exists a local trivialization of P, i.e. a diffeomorphism
ϕ : P|U := π−1(U) → U × G that is G-equivariant (where the action on U × G is

1
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right multiplication with the second factor) and the following diagram commutes:

P|U U × G

U

ϕ

π

where the map U × G → U is projection onto the first factor.
v

Example 1.2. Let E→ X be a real vector bundle of rank k. For x ∈ X, letBx denote the set
of all bases of the fiber Ex, i.e. the set of linear isomorphisms Rk → Ex. This has a natural
right action of GLkR by precomposition. Furthermore, this action is free and transitive,
giving Bx the structure of a GLkR-torsor. Then let

BGLkR(E) := ä
x∈X

Bx

Using local trivializations of the vector bundle E, we equipBGLkR(E)with the structure of
a smooth manifold such that the map π : BGLkR(E) → X taking Bx to x is a submersion.
This gives π : BGLkR(E) → X the structure of a principal GLkR-bundle, called the frame
bundle of E, where the local trivializations are defined in terms of local trivializations of
E.

Example 1.3. Let E → X be a rank k vector bundle equipped with a fiber metric, i.e. a
smoothly varying inner product on the fibers Ex. Then the orthonormal frame bundle of
E, denoted BO(E), is the principal Ok-bundle where the fiber over x ∈ X is the Ok-torsor
of linear isometries Rk → Ex, where the we use the standard inner product on Rk and the
fiber metric restricted to Ex.

A near identical story holds for complex vector bundles – from any complex vector bun-
dle we get a principal GLkC-bundle of frames, and if we fix a Hermitian fiber metric, we
get a principal Uk-bundle of orthonormal frames.

Principal bundles can be thought bundles of symmetries of some other fiber bundle,
which can be made precise using the notion of an associated bundle, which allows one to
construct fiber bundles out of principal bundles.

Definition 1.4. Let P → X be a principal G-bundle, and let F be a smooth manifold with
right G action. The associated fiber bundle, denoted P×G F (sometimes denoted P×G F)
is the space

P×G F := (P× F)/G
where the right G-action on F is the diagonal action, i.e. (p, f ) · g = (p · g, f · g). v

If instead we have a left G-action on F, we can turn it into a right action by defining
f · g := g−1 · f . As the name suggests, P×G F is a fiber bundle.

Exercise 1.5. Let π : P → X a principal bundle. Given a smooth right action of G on F,
use local trivializations of P → X to show that the map taking an equivalence class [p, f ]
to π(p) gives P×G F the structure of a fiber bundle over X with model fiber F. (
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In the case that themodel fiber is a vector space V, and the action is linear, the associated
bundle P×G V is a vector bundle.

Exercise 1.6.
(1) Let E→ X be a rank k vector bundle, andBGLkR(E) be its GLkR-bundle of frames.

Let ρ : GLkR → GLkR be the defining representation (i.e. the identity map).
Show that the associated bundle BGLkR(E)×GLkR Rk is isomorphic to E.

(2) Further suppose that E comes equipped with a fiber metric, and let BO(E) be its
orthonormal frame bundle. The associated bundle BO(E) ×Ok Rk is isomorphic
to E by a near identical proof as the previous part. How can one recover the fiber
metric?

(3) Let ρ∗ : GLkR → GLkR denote the dual representation of the defining represen-
tation ρ, so ρ(A) = (A−1)T. Show that the associated bundle is isomorphic to the
dual bundle E∗. In particular, this should illuminate the distinction between the
tangent and cotangent bundles.

(

Example 1.7. There are two important examples of associated bundles that we’ll need to
discuss the Yang-Mills equations.

(1) The bundle Ad P := P×G G where G acts on G by conjugation.
(2) The bundle ad P := P×G g (also denoted gP)where the action is the adjoint action.

Confusingly, the former is sometimes called the “Adjoint bundle" and the latter is some-
times called the “adjoint bundle," which makes it admittedly hard to distinguish between
them when speaking.

Associated bundles have another nice feature – their sections have a nice interpretation
in terms of G-equivariant maps.

Proposition 1.8. Let E = P×G F be an associated fiber bundle, and let Γ(X, E) denote the space of
global sections, i.e. the space of smooth maps f : X → E such that π ◦ f = idX, where π : E→ X
denotes the projection map. Then there is a bijective correspondence

Γ(X, E)←→ {G-equivariant maps P→ F}

Proof. Let σ : X → E be a section. Then define the map σ̃ : P → F as follows: for x ∈ X,
let (p, f ) be a representative for σ(x). Then define σ̃(x) := f .

In the other direction, let ϕ̃ : P → F be an equivariant map. Then define the section
ϕ : X → E by ϕ(x) = [p, ϕ̃(p)] for any choice of p ∈ Px. �

Exercise 1.9. Verify that the map ϕ defined above is well-defined. Verify the two construc-
tions above are inverses to each other. (

The main takeaway from the proposition is the motto that “G-equivariant objects on P
descend to objects on X."

Before we discuss connections on principal bundles, we introduce the concept of vector
bundled valued forms.
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Definition 1.10. Let E → X be a vector bundle. An E-valued differential k-form is a
section of ΛkT∗X⊗ E. We denote the space of E-valued k-forms by Ωk

X(E). If V is a fixed
vector space, a V-valued differential k-form is a X ×V-valued k-form, and we let Ωk

X(V)
denote the space of V-valued k-forms. v

In a local frame {ei} for E, an E-valued k-form ω can be written uniquely as

ω = ωi ⊗ ei

for k-forms ωi ∈ Ωk
X,so an E-valued k-form can be thought of as a vector of k-forms. We

will usually omit the tensor symbol, and simply write ω = ωiei. However, this does not
transform tensorially with respect to coordinate changes on X unless E is a trivial bundle.
The components of the vector transform tensorially with respect to coordinate changes,
but the vector itself changes according to the transition functions of the vector bundle E.
Given E-valued forms ω ∈ Ωk

X(E) and η ∈ Ω`
X(E), we define their wedge product in a

local trivialization to be
ω ∧ η := (ωi ∧ η j)ei ⊗ ej

which is an element of Ωk+`
X (E⊗ E). In addition, the usual exterior derivative d : Ωk

X →
Ωk+1

X gives us a local definition
dω = dωiei

However, this is dependent on our choice of frame, and does not give a well defined oper-
ator Ωk

X(E)→ Ωk+1
X (E). For the most part, we will be concerned with Lie algebra valued

forms, which are just g-valued forms for a fixed Lie algebra g. These forms have some
additional operations coming from the Lie algebra structure of g. Fix a basis {ξi} for g.
This determines a global trivialization of the trivial bundle X× g, so any g-valued k-form
ω ∈ Ωk

X(g) can be uniquely written as ω = ωiξi. Let ω ∈ Ωk
X(g) and η ∈ Ω`

X(g). Then
define their bracket to be

[ω ∧ η] := (ωi ∧ η j)[ξi, ξ j]

In other words, it is the composition

Ωk
X(g)⊗Ωk

X(g) Ωk+`
X (g⊗ g) Ωk+`(g)

where the first map is the wedge product, and the second map is induced by the Lie
bracket.

We now discuss connections. Let π : P → X be a principal G-bundle, and let g be the
Lie algebra of G. The projection map π is a submersion, so it is constant rank. Therefore,
the subset V ⊂ TP where the fiber over p is ker dπp is a subbundle, called the vertical
distribution of P, giving us an exact sequence of vector bundles over P

0 V TP π∗TX 0

Definition 1.11. A connection on P is a distribution H ⊂ TP such that
(1) V ⊕ H = TP
(2) Hp·g = d(Rg)pHp, where Rg : P→ P is the map p 7→ p · g.

The distribution H is also called the horizontal distribution. We let A (P) denote the
space of connections on P. v
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Equivalently, it is a choice of G-invariant splitting of the exact sequence. The perspective
of viewing a connection as a horizontal distribution is useful at times, but it is often more
convenient for computations to rephrase a connection in terms of g-valued forms. Let
exp : g → G denote the exponential map. Given X ∈ g and p ∈ P, the exponential map
determines a curve γX,p with γX(0) = p where

γX,p(t) := p · exp(tX)

Since the action of G preserves the fiber Pπ(p), the tangent vector

.
γX,p :=

d
dt

∣∣∣∣
t=0

γX,p(t)

lies in Vp. Furthermore, since the action of G on P is free, we have that .γX,p = 0 if and
only if X = 0. Finally, the mapping X 7→ .

γX,p is linear, so we have that this gives an
isomorphism g → Vp by a dimension count. Doing this over all p ∈ P, this gives an
isomorphism of V with the trivial bundle P× g. Because of this, wewill implicitly identify
elements of gwith the vertical vector fields they determine. One thing to note is how these
vector fields transform with respect to the action of G.

Proposition 1.12. Let X ∈ g, and let X̃ denote the vertical vector field on P induced by X. For
g ∈ G, let Rg : P→ P be map given by the action of g. Then

(Rg)∗X̃ = Ãdg−1 X

Proof. We compute

((Rg)∗X̃p) = (Rg)∗

(
d
dt

∣∣∣∣
t=0

p · exp(tX)

)
=

d
dt

∣∣∣∣
t=0

p · (exp(tX)g)

= (p · g)(g−1 exp(tX)g)

= (Ãdg−1 X)p·g

�

Furthermore, the identification of the vertical distribution V with the trivial bundle X×
g gives us a nice characterization of E-valued forms, when E = P×G W is an associated
bundle coming from a linear representation ρ : G → GL(W).

Proposition 1.13. Let P → X be a principal bundle and E the associated bundle coming from a
linear representation ρ : G → GL(W). Then there is a bijective correspondence

Ωk
X(E)↔

{
α ∈ Ωk

P(W) : R∗gα = ρ(g−1)α , ∀X ∈ g, ιXα = 0
}

where we identify X ∈ g with its vertical vector field and ιX denotes interior multiplication by X.

Morally, the correspondence comes from the fact that a form on P descending to X
should satisfy G-invariance, and should be constant in the vertical directions.

Exercise 1.14. Prove the previous proposition. (
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Now suppose we have a horizontal distribution H ⊂ TP. The decomposition TP =
V ⊕ H gives us a projection map TP → V with kernel H. Identifying V with P× g, the
projection map can be identified with a g-valued 1-form A ∈ Ω1

P(g), called the connection
1-form. Using the transformation law for the vertical vector fields determined by g, we get
the following transformation law for the connection 1-form A.

Proposition 1.15. A connection 1-form A ∈ Ω1
P(g) satisfies

R∗g A = Adg−1 A

Proof. For v ∈ TpP, decompose v = X + h with X ∈ g and h ∈ Hp. We then compute
(R∗g A)(v) = (R∗g A)(X + h)

= Ap·g((Rg)∗X + (Rg)∗h)
= Ap·g(Adg−1 X)

= (Adg−1 A)p(X + h)

where we use the fact that Hp is the the kernel of Ap and the fact that H is G-invariant. �

Furthermore, since A is given by projection onto the vertical distribution, we have that
ιX A = X for all X ∈ g. This gives us an identification of A (P) with the subset of Ω1

P(g)
satisfying the conditions

(1) R∗g A = Adg−1 A
(2) ιX A = X for all X ∈ g.

The second condition can be rephrased in terms of the Maurer-Cartan form θ ∈ Ω1
G(g),

which is defined by the properties:
(1) θe = idg.
(2) θg(v) = (dLg−1)g(v).

where Lg−1 : G → G is left multiplication by g−1. The action of G on any G-torsor X gives
us a Maurer-Cartan form on X.

Exercise 1.16. Show that the second condition is equivalent to A|Px = θ for any x ∈ X. (

The Maurer-Cartan form θ satisfies theMaurer-Cartan equation

dθ +
1
2
[θ ∧ θ] = 0

Exercise 1.17. Using proposition 1.13, prove that the spaceA (P) of connections is an affine
space over Ω1

X(gP), i.e. show that the difference A1 − A2 between two connections is an
element of Ω1

X(gP). (

Definition 1.18. Let A ∈ A (P) be a connection. Then the curvature of A, denoted FA, is
the g-valued 2 form

FA := dA =
1
2
[A ∧ A]

v

Proposition 1.19.
(1) R∗gFA = Adg−1 FA.
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(2) ιXFA = 0 for all X ∈ g.

Proof.
(1) We compute

R∗FA = R∗gdA +
1
2

R∗g[A ∧ A]

= d(Adg−1 A) +
1
2
[R∗g A ∧ R∗G A]

= Adg−1 dA +
1
2
[Adg−1 A ∧Adg−1 A]

= Adg−1 FA

(2) For this, we use a lemma.

Lemma (Cartan’s magic formula). Let X be a vector field, and ω a k-form. Let LX
denote the Lie derivative along X. Then

LX = dιXω + ιXdω

Let X ∈ g, interpreted as a vertical vector field on P. Then we compute

ιXFA = ιXdA +
1
2

ιX[A ∧ A]

We compute the two terms separately. Cartan’s magic formula gives us that
LX A = dιX A + ιXdA

Since ιXFA is the constant function with value X, we have that dιXFA is 0, so we get
LXFA = ιXdFA. Using the definition of the Lie derivative, we compute

LX A =
d
dt

∣∣∣∣
t=0

R∗exp tX A

=
d
dt

∣∣∣∣
t=0

Adexp(tX)−1 A

= [−X, A]

For the other term, we compute
1
2

ιX[A ∧ A] =
1
2
[ιX A ∧ A] = [X, A]

adding these together gives us the desired result.
�

In other words, the curvature FA descends to a gP-valued 2-form on the base manifold
X.

Exercise 1.20. Given a connection A on a principal bundle P, prove that the curvature FA
vanishes if and only if horizontal distribution H defined by the kernel of A is integrable.
To prove this, reformulate Frobenius’ theorem (a distribution is integrable if and only if it
is involutive) in terms of the vanishing of a tensor, and show that this tensor (up to sign)
is equal to FA. (
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Definition 1.21. A connection A ∈ A (P) is flat if FA = 0. v

For vector bundles, a more familiar definition of a connection involves a first order op-
erator on sections satisfying a Leibniz rule. Using the language of principal bundles and
associated bundles, we recover this notion with the exterior covariant derivative.

Definition 1.22. Let E = P×G W be the associated vector bundle obtained from a linear
representation ρ : G → GL(W), and let .ρ : g→ End(W) denote the associated Lie algebra
representation. The exterior covariant derivative is the map

dA : Ωk
X(E)→ Ωk+1

X (E)
ψ 7→ dψ +

.
ρ(A) ∧ ψ

v

Exercise 1.23. Recall that a connection on a vector bundle E → X is given in a local triv-
ialization by d + A for some End(E)-valued 1-form A. Show that when P = BGLkR(E)
is the frame bundle of a vector bundle E, the exterior covariant derivative on sections on
P×GLkR Rk ∼= E agrees with this definition. (

For the most part, we will be concerned with situation when the vector bundle is gP, in
which case, the formula is given by

dAψ = dψ + [A ∧ ψ]

Since A (P) is an affine space over Ω1
X(gP), given a connection A ∈ A (P) and a gP-valued

1-form η ∈ Ω1
X(gP), we have that A + η is also a connection. It can be shown that the

curvature of A + η is given by

FA+η = FA +
1
2
[η ∧ η] + dAη

In particular, if we take a line of connections A + tη with t ∈ R, we have

d
dt

∣∣∣∣
t=0

FA+tη =
d
dt

∣∣∣∣
t=0

FA +
t2

2
[η ∧ η] + tdAη = dAη

So the exterior covariant derivative on gP measures the infinitesimal change of the curva-
ture of A in the direction η.

2. The Yang-Mills Equations

To discuss the Yang-Mills equations, we will restrict to compact Lie groups G. As be-
fore, X will denote an n-dimensional orientable closed smooth manifold.

Since G is compact, its Lie algebra g is semisimple, so theKilling form 〈·, ·〉 : g⊗ g→ R is
nondegenerate. For the rest of our discussion, 〈·, ·〉 can be replaced by any inner product
invariant under the Adjoint action, though it does us no harm to assume that it is the
Killing form (up to changing signs to make it positive definite).

Lemma 2.1. Let 〈·, ·〉 denote any Adjoint invariant inner product on g. Then for X1, X2, X3 ∈ g,
we have

〈[X1, X2], X3〉 = 〈X1, [X2, X3]〉
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Proof. We compute

〈[X1, X2], X3〉 = 〈[−X2, X1], X3〉

=
d
dt

∣∣∣∣
t=0
〈Adexp(−tX2) X1, X3〉

=
d
dt

∣∣∣∣
t=0
〈Adexp tX2 Adexp(−tX2) X1, Adexp(tX2) X3〉

= 〈X1, [X2, X3]〉

�

The form 〈·, ·〉 induces a fiber metric on P× g, and invariance under the Adjoint action
tells us that this fiber metric descends to a fiber metric on gP. This gives us pairings

Ωk
X(gP)⊗Ω`

X(gP)→ Ωk+`
X

ω⊗ η 7→ 〈ω ∧ η〉

We now fix an orientation and a Riemannian metric g on X. This gives us:
(1) A Riemannian volume form Volg ∈ Ωn

X.
(2) A Hodge star operator ? : Ωk

X → Ωn−k
X .

The Hodge star extends to gP-valued forms, which gives us inner products on Ωk
X(gP)

given by

(ω, η) :=
∫

X
〈ω ∧ ?η〉

We let ‖·‖ denote the norm induced by these inner products.

We now introduce the gauge group of a principal G-bundle P→ X.

Definition 2.2. Let π : P → X be a principal G-bundle. The gauge group, denoted G (P),
is the group of automorphisms of P, i.e. G-equivariant diffeomorphisms ϕ : P → P such
that π = π ◦ ϕ. An element of G (P) is called a gauge transformation. v

Proposition 2.3. The group G (P) is isomorphic to the group of sections Γ(X, Ad P), where the
group operation is pointwise multiplication.

Proof. Weprovidemaps in both directions. Supposewe have an automorphism ϕ : P→ P.
Since π = π ◦ ϕ, the map ϕ preserves the fibers of π. Therefore, for any p ∈ P, we have
that p and ϕ(p) differ by the action of some gp ∈ G. The mapping gϕ : P → G taking
p 7→ gp is easily verified to be equivariant with respect to the conjugation action of G, so
it defines a section of Ad P

In the other direction, given a G-equivariant map f : P → G, we get a bundle auto-
morphism ϕ f : P → P where ϕ f (p) = p · f (p). The two maps we constructed are clearly
inverse to each other, giving us the desired correspondence. �

The gauge group G (P) acts on the space Ω1
P(g) of g-valued forms by pullback. We claim

that it preserves the subspace A (P) ⊂ Ω1
P(g).
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Proposition 2.4. For a connection A ∈ A (P) and a gauge transformation ϕ : P → P, let
gϕ : P→ G denote the equivariant map associated to ϕ, then show:

ϕ∗A = Adg−1
ϕ A +g∗ϕθ

where θ ∈ Ω1
G(g) is the Maurer-Cartan form. In particular, we have

(1) R∗g A = Adg−1 ϕ∗A.
(2) ιX ϕ∗A = X for all X ∈ g.

So ϕ∗A is again a connection.
Exercise 2.5. Prove the previous proposition. (

Definition 2.6. Two connections A1 and A2 are gauge equivalent if there exists a gauge
transformation ϕ ∈ G (P) such that ϕ∗A1 = A2. v

Proposition 2.7. Let A ∈ A (P) be a connection, ϕ : P → P a gauge transformation, and
gϕ : P→ G the associated equivariant map. Then

Fϕ∗A = Adg−1
ϕ

FA

Proof. We compute

Fϕ∗A = d(Adg−1
ϕ

A + g∗ϕθ) +
1
2
[Adg−1

ϕ
A + g∗ϕθ ∧Adg−1

ϕ
A + g∗ϕθ]

= Adg−1
ϕ

dA + g∗ϕdθ +
1
2

(
[Adg−1

ϕ
A ∧Adg−1

ϕ
A] + [Adg−1

ϕ
A ∧ g∗ϕθ] + [g∗ϕθ ∧Adg−1

ϕ
A] + [g∗ϕθ ∧ g∗ϕθ]

)
= Adg−1

ϕ
dA +

1
2
[Adg−1

ϕ
A, Adg−1

ϕ
A]]

= Adg−1
ϕ FA

The term
g∗ϕdθ +

1
2
[g∗ϕθ ∧ g∗ϕθ]

vanishes due to the Maurer-Cartan equation. The term
1
2

(
[Adg−1

ϕ
A ∧ g∗ϕθ] + [g∗ϕθ ∧Adg−1

ϕ
A]
)

vanishes due to the fact that [· ∧ ·] is skew symmetric on 1-forms. �

With some of the preliminary results established, we arrive at the Yang-Mills functional.
Definition 2.8. The Yang-Mills functional is the map L : A (P)→ R given by

L(A) := ‖FA‖2 =
∫

X
〈FA ∧ ?FA〉

v

We note that for any gauge transformation ϕ ∈ G (P), we have L(ϕ∗A) = L(A), since
we have

L(ϕ∗A) =
∫

X
〈Adg−1

ϕ
FA ∧ ?Adg−1

ϕ
FA〉 =

∫
X
〈FA ∧ ?FA〉 = L(A)

because of this we say that L is gauge invariant.

The Yang-Mills equations are the variational equations for the Yang-Mills functional.
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Proposition 2.9 (The first variation). Let A be a local extremum of L. Then we have
dA ? FA = 0

Proof. Let η ∈ Ω1
X(gP). We then compute

L(A + η) =
∫

X
〈FA+tη ∧ ?FA+tη〉

=
∫

X
〈FA +

t2

2
[η ∧ η] + tdAη ∧ ?(FA +

t2

2
[η ∧ η] + tdAη)

The term linear in t is ∫
X
〈FA ∧ ?dAη〉+ 〈dAη ∧ ?FA〉 = 2(FA, dAη)

Then let d∗A = (−1)2n+1 ? dA? denote the formal adjoint to dA. Since A is a local extremum,
the term linear in t must vanish, so for every η, we must have

(FA, dAη) = (d∗AFA, η) = 0

Then since up to sign d∗A = ?dA? and ? is an isomorphism, we have dA ? FA = 0. �

The first variation gives us what are referred to as the Yang-Mills equations
dAFA = 0

d∗AFA = 0

Definition 2.10. A Yang-Mills connection is a connection A ∈ A (P) satisfying the Yang-
Mills equations, i.e. a local extremum of L. v

Exercise 2.11. In the case that G = U1, show that the curvature of a connection A can be
identified as an element of Ω2

X. Show that A is a Yang-Mills connection if and only if FA is
a harmonic form, i.e. ∆FA = 0, where ∆ = dd∗ + d∗d is the Hodge Laplacian. Use this to
show that the space of Yang-Mills connections on a principal U1-bundle P is a torsor over
the vector space of closed 1-forms on X. (

The first equation is simply the Bianchi identity and the second comes from the first
variation.

Proposition 2.12 (The second variation). Let A be a Yang-Mills connection. Then for every
η ∈ Ω1

X(gP), we have
d
dt

∣∣∣∣
t=0

d∗A+tη FA+tη = d∗AdAη + ?[η ∧ ?FA]

The proof of this is similar to the proof of the first variation, and involves expanding out
d∗A+tη FA+tη and then taking the term linear in t. If we think of L as a Morse function on
A (P), for a Yang-Mills connection A, the operator d∗AdA + ?[· ∧ ?FA] can be interpreted
as the Hessian of L at the critical point A. In particular, if η is tangent to the critical sub-
manifold of Yang-Mills connections, one can use the Atiyah-Singer index theorem with
this operator to compute the dimension of the space of Yang-Mills connections.

We now restrict ourselves to the case where X is a Riemann surface of genus g ≥ 2.
Let ΓR denote the central extension of π1(X) by R where if we let J denote the element
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1 ∈ R (to avoid confusion with the identity element of a group), we have the relation
∏i[ai, bi] = J where the ai and bi are the generators for the usual presentation of a closed
surface of genus g. Using this group one can prove the following theorems, though we
will omit the proofs.

Theorem 2.13. Every principal G-bundle P→ X admits a Yang-Mills connection.

Theorem 2.14. There is a bijective correspondence
Hom(ΓR, G)/G ←→ {Principal G-bundles P→ Xwith a Yang-Mills connection} / ∼

where the action of G is conjugation and the equivalence relation is gauge equivalence.

The second theorem should be thought of an analogue of the classical Riemann-Hilbert
correspondence.

Exercise 2.15. The classical Riemann-Hilbert correspondence gives a bijection
Hom(π1(X), G)/G ↔ {Principal G-bundles P→ X equipped with a flat connection A} / ∼
where the action of G on Hom(π1(X), G) is by conjugation, and the equivalence relation
is gauge equivalence of conenctions. The correspondence assigns to ρ ∈ Hom(π1(X), G)
the associated bundle

X̃×π1(X) G

where X̃ is the universal cover of X, and the connection is the one induced by descending
the trivial connection on X̃ × G to the quotient. In the other direction, the holonomy of a
flat connection defines (up to conjugation by G) a homomorphism π1(X)→ G.

A principal U1-bundle P→ X corresponds to a Hermitian line bundle L→ X by taking
the associated bundle P×U1 C with the standard action of U1 on C. Using this correspon-
dence and the classical Riemann-Hilbert correspondence, show that there is a bijection
Hom(ΓR, U1)/U1 ←→ {Principal U1-bundles P→ Xwith a Yang-Mills connection} / ∼

(

For the rest of our discussion, we will restrict to case where G = Un. We first make a
remark involving the proofs of the two preceding theorems. As with the U1 case, the data
of a principal Un-bundle P → X is equivalent to a rank n complex vector bundle E → X
equipped with a Hermitian metric. In the proofs, one shows that a Yang-Mills connection
A is equivalent to the choice of a Lie algebra element X ∈ un. Writing X = −2πiΛ for a
Hermitian matrix Λ, the Yang-Mills condition implies that the trace of Λ is equal to the
first Chern class of E, thought of as an integer by integrating over X. If we let λi denote
the ith-eigenvalue (arranged in ascending order) and ni the multiplicity of λi, one can
show that niλi must also be integral. These observations will be useful when we relate
Yang-Mills connections with holomorphic vector bundles.

3. Holomorphic Vector Bundles and Yang-Mills Connections

A good references for this material would be [8] and [10]

Let X denote a complex manifold.
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Definition 3.1. A holomorphic vector bundle is a complex vector bundle π : E→ X such
that the total space E is a complex manifold and π is holomorphic. v

Given a holomorphic vector bundle E → X, we can find a trivialization of E such that
the transition functions are holomorphic. In a neighborhood U ⊂ X such that E|U is
holomorphically trivial, the smooth sections can be identified with functions U → Cn,
and the holomorphic sections can be identified with holomorphic functions U → Cn.
We have a local operator ∂, which we can apply componentwise to a local section to get
an operator on smooth sections over U. Furthermore, since ∂ annihilates holomorphic
functions and the transition functions are holomorphic, we have that ∂ glues to a well
defined operator ∂E : A0

X(E) → A0,1
X (E). The holomorphic sections of E are then exactly

the sections annihilated by ∂E. Furthermore, the operator ∂E extends to operators ∂E :
Ak

X(E)→ Ak+1
X (E), and satisfies the condition ∂

2
E = 0, since ∂

2
= 0. The punchline is that

the holomorphic structure on E is entirely determined by this operator.

Theorem 3.2. Let π : E→ X be a C∞ complex vector bundle, and let D : A0
X(E)→ A0,1(E) be

an operator satisfying the Leibniz rule and D2 = 0. Then there exists a unique complex structure
on E such that π is holomorphic and the holomorphic sections are exactly the ones annihilated by
D.

This can be seen as a linearized version of the Newlander-Nirenberg theorem. In par-
ticular, a holomorphic vector bundle E→ X can be thought of as a smooth vector bundle
alongwith a choice of operator ∂E. Since the operator ∂ satisfies a Leibniz rule, the operator
∂E behaves like a connection. In a smooth local trivialization, we can write

∂E = ∂ + B

where B is a smooth MnC-valued (0, 1)-form. Indeed, we have that the space of holomor-
phic structures on a smooth vector bundle E→ X is an affine space over A0,1(End E). We
let C (E) denote the space of holomorphic structures on E.

We now restrict to the case where X is a Riemann surface of genus g ≥ 2.

Definition 3.3. The slope of a holomorphic vector bundle E→ M is

µ(E) :=
c1(E)

rank(E)

where we think of c1(E) ∈ H2(X, Z) as an integer via integration over X. v

Sometimes the integer c1(E) is also referred to as the degree of E. One thing to note is
that the slope of a holomorphic vector bundle is independent of the holomorphic structure
– both the degree and rank are topological invariants, and only depend on the underlying
C∞ complex vector bundle.

Definition 3.4. A holomorphic vector bundle E→ X is
(1) Stable if for every holomorphic subbundle F ⊂ E, we have µ(F) < µ(E).
(2) Semistable if for every holomorphic subbundle F ⊂ E, we have µ(F) ≤ µ(E).
(3) Unstable if E is not semistable.

v
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While the slope is a topological invariant, stability is not, since we only consider holo-
morphic subbundles – which depend on the holomorphic structure. We also note that
both the degree and rank are additive in exact sequences, which immediately gives us:

Proposition 3.5. Suppose we have the short exact sequence of holomorphic bundles

0 E F G 0

Then we have
µ(F) =

deg(E) + deg(G)

rank(E) + rank(G)

Corollary 3.6. Given a short exact sequence of holomorphic bundles

0 E F G 0

If µ(E) ≥ µ(F), then µ(F) ≥ µ(G). Likewise, if µ(E) ≤ µ(F), then µ(F) ≤ µ(G).

In other words, slopes behave monotonically in short exact sequences. The terminology
comes from Geometric Invariant Theory (GIT). The main result will use is:

Theorem 3.7 (The Harder-Narasimhan Filtration). Let E→ X be a holomorphic vector bun-
dle. Then E admits a canonical filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

by holomorphic subbundles Ei such that Ei/Ei−1 is semistable and
µ(E1/E0) > µ(E2/E1) > · · · > µ(En/En−1)

The proof of the above theorem is not extremely difficult, but we omit it. The main idea
is that any holomorphic vector bundle has a uniquemaximal semistable subbundle, which
we take to be E1. We then take E2 to be the preimage of the maximal semistable bundle
of E1/E0 under the quotient map, and continue inductively. The slopes µi := µ(Ei/Ei−1)
gives us n rational numbers. If k denotes the rank of E, then we construct an element of
Qk by arranging the µi in order, and repeating the entry µi a total of rank(Ei/Ei−1) times.
We call this vector the Harder-Narasimhan type of E.

Our ultimate goal will be to relate moduli spaces of holomorphic vector bundles over X
to Yang-Mills connections. To see this, let E → X be a C∞ complex vector bundle of rank
n, and fix a Hermitian metric on E. Then let P → X denote the principal Un-bundle of
frames for E. We abbreviate the gauge group G (P) as G .

Proposition 3.8. There is a bijection A (P)↔ C (E).

Proof. We provide maps in both directions. Suppose we have a connection A ∈ A (P).
Then A induces a covariant derivative dA : A0

X(E) → A1
X(E). The (0, 1) part of dA auto-

matically satisfies (d0,1
A )2 = 0, since A2

X = 0 by dimension reasons. Therefore, d0,1
A defines

a holomorphic structure on E.

In the other direction, given a holomorphic structure ∂E, there exists a uniqueHermitian
connection A such that d1,0

A = ∂E called the Chern connection, which is a sort of analogue
to the Levi-Civita connection in Riemannian geometry. �
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Let GC denote the group of smooth bundle automorphisms of E. Though both GC and
G are both infinite dimensional, the former can be seen as the complexification of the lat-
ter. Furthermore, we can identify G with the subgroup of GC consiting of automorphisms
whose restrictions to each fiber is a unitary transformatino. The space C (E) has a natu-
ral action by GC by conjugation. Furthermore, the orbits under this action are exactly the
isomorphism classes of holomorphic structures on E. This is most easily seen by charac-
terizing an isomorphism ϕ : E → F of holomorphic vector bundles as a smooth bundle
isomorphism intertwining ∂E and ∂F. However, the naïve quotient C (E)/GC is poorly
behaved (for example, it is not Hausdorff). To remedy this, as in GIT, we restrict our at-
tention to semistable bundles.

The relationship between GC and G as well as the identification of A (P) and C (E) sug-
gests that isomorphism classes of holomorphic bundles should have something to dowith
gauge equivalence classes of connections on P. This is turns out to be true, and is an in-
finite dimensional version of the relationship between a GIT quotient and a symplectic
quotient. To investigate further, we make a short digression regarding this relationship.

Let G be a reductive complex group, and X a compact Kähler manifold with Kähler
metric ω, equipped with a “nice" action of G. In the usual setting, X is a smooth projective
variety with a fixed embedding X ↪→ CPN, the Kähler metric ω is the restriction of the
Fubini-Study form, and the G-action is induced by a homomorphism G → GLN+1(C).
In general, the naïve quotient X/G is not well behaved, and one restricts the action to a
subset Xss consisting of semistable points to construct the GIT quotient Xss/G.

Then let K ⊂ G denote the maximal compact subgroup, which has the property that its
complexification is isomorphic to G. Suppose that the action of K on X is symplectic, i.e.
the action of any k ∈ K preserves the Kähler metric on X. Let k denote the Lie algebra of K.
Then the infinitesimal action of K is given by the Lie algebra homomorphism k → X(X)
(where X(X) denotes the space of vector fields on X) defined by ξ 7→ Xξ where

(Xξ)p :=
d
dt

∣∣∣∣
t=0

p · exp(tξ)

Definition 3.9. A symplectic action of K on X isHamiltonian if for each ξ ∈ k, there exists
a function Hξ : X → R such that for all p ∈ X and v ∈ TpX, we have

ωp((Xξ)p, v) = (dHξ)p(v)

and the mapping ξ 7→ Hξ is K-equivariant with respect to the right actions of K on k by
the Adjoint action and precomposition with right translation Rk on C∞(X). The functions
Hξ are called Hamiltonian functions. v

Definition 3.10. Suppose we have a Hamiltonian action of K on X. Amoment map for the
action is a K-equivariant map µ : X → k∗ (where the action on k is the coadjoint action)
such that for any p ∈ X, v ∈ TpX, and ξ ∈ k, we have

dµp(v)(ξ) = ωp((Xξ)p, v)

v
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One things to note is that the Hamiltonian functions can be recovered by the moment
maps. If a Hamiltonian action admits a moment map, then

Hξ(p) = µ(p)(ξ)

The let 〈·, ·〉 be an inner product on k∗ that is invariant under the coadjoint action, and ‖·‖
the induced norm. Since X is compact, the map ‖µ‖2 : X → R attains its minimum, and
WLOG we assume that the minimum value is 0.
Definition 3.11. The symplectic quotient of X by K is the quotient space

µ−1(0)/K

v

The symplectic quotient can also be referred to as the symplectic reduction or theMarsden-
Weinstein quotient. It should be noted that the symplectic quotient depends on our choice
of moment map.
Theorem 3.12. The symplectic quotient of X by K admits a unique Kähler structure such that the
Kähler metric on µ−1(0)/K is induced by the Kähler metric on X.

The relationship between the GIT quotient and the symplectic quotient is given by the
Kempf-Ness theorem.
Theorem 3.13 (Kempf-Ness). Suppose a complex reductive group G acts on a Kähler manifold
X such that the action of the maximal compact subgroup K ⊂ G is Hamiltonian and admits a
moment map µ : X → k∗. Then the G-orbit of any semistable point contains a unique K-orbit
minimizing ‖µ‖2. This establishes a homeomorphism

Xss/G ←→ µ−1(0)/K

We nowwant to relate the previous discussion to our situation. Using the identification
of A (P) and C (E), we want the action of GC to play the role of the complex reductive
group G and the gauge group G to play the role of the maximal compact subgroup. Since
the space A (P) is infinite dimensional, along with the groups GC and G , we are working
in an infinite dimensional setting, but wewill gloss over the analytic details andworkwith
them formally.

Our first task is to realize A (P) as a “Kähler manifold." Since X is a surface, the Hodge
star mapsA1

X(gP) to itself and squares to−1, so it defines a “complex structure" on A (P),
where we use the fact that A (P) is affine over the vector space A1

X(gP) to identify the
“tangent space" of A (P) at a connection A with A1

X(gP). Furthermore, the fact that for
1-forms ω, η ∈ A1

X(gP) the pairing 〈ω ∧ η〉 is skew-symmetric, we can identify the pairing

ω⊗ η 7→
∫

X
〈ω ∧ η〉

as a “symplectic form" on A (P). Together, these give A (P) the structure of a “Kähler
manifold."

Our next task is to show that the action of G on A (P) is “Hamiltonian" with respect to
this Kähler structure. One can identify the “Lie algebra" of G with the space of sections
Γ(X, gP).
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Proposition 3.14. The infinitesimal action of φ ∈ Γ(X, gP) on A (P) is given by the mapping
A 7→ dAφ.

Proof. We compute the vector field at a connection A ∈ A (P) to be
d
dt

∣∣∣∣
t=0

Adexp(tφ)−1 A + exp(tφ)∗θ = −[φ, A] +
d
dt

∣∣∣∣
t=0

(dLexp(−tφ)d(exp(tφ)))

= [A, φ] +

(
d
dt

∣∣∣∣
t=0

dLexp(−tφ)

)
d(exp(0)) + dLexp(0)

(
d
dt

∣∣∣∣
t=0

d(exp(tφ))
)

= [A, φ] + dφ

= dAφ

where for the third equality we use the product rule, and in the fourth equality we use the
fact that exp(0) = id and that the derivative of exp(tφ) as t→ 0 is φ. �

Proposition 3.15. Let φ ∈ Γ(X, gP). Then the function
Hφ : A (P)→ R

A 7→
∫

X
〈FA ∧ φ〉

is a Hamiltonian function for φ.

Exercise 3.16. Prove the previous proposition. (

Since 〈·, ·〉 is invariant under the adjoint action, the mapping φ 7→ Hφ is clearly G equi-
variant, so this tells us that the action is Hamiltonian. Furthermore, the computation we
made identifies the mapping A 7→ FA as the moment map for this action. To summarize,
we have the following analogies

Kähler manifold X ←→ A (P)
Complex reductive group G ←→ GC

Maximal compact subgroup K ⊂ G ←→ G

Moment map µ←→ A 7→ FA

Norm square of the moment map ‖µ‖2 ←→ L

The last missing piece is something analogous to the Kempf-Ness theorem.

Theorem 3.17 (Narasimhan-Seshadri). Let As(P) ⊂ A (P) denote the subspace of connec-
tions that are absolute minima for the Yang-Mills functional, and correspond to irreducible repre-
sentations ΓR → Un. Let Cs(E) denote the subspace of stable holomorphic structures on E. The
isomorphism classes of holomorphic bundles in Cs(E) admit unique Yang-Mills connections (up
to gauge equivalence) minimizing the Yang-Mills functional. In other words, there is a homeomor-
phism

As(P)/G ←→ Cs(E)/GC

Remark. The original proof is more algebraic in flavor. A proof more in the spirit of the
Atiyah-Bott paper was given by Donaldson in [3]. The spirit of this proof is carried on by
the proof of Hermitian-Yang-Mills and the nonabelian Hodge theorem, which were both
grew out of the developments from the Atiyah-Bott paper.
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One issue is that theNarasimhan-Seshadri theoremonlyworks for stable bundles. How-
ever, in the case that the rank and degree of E are coprime, stability and semistability co-
incide for numerical reasons. Our computations for the cohomology of the moduli space
of holomorphic bundles of rank n and degree k will include the assumption that the rank
and degree of E are coprime.

In the finite dimensional case, when things are sufficiently, nice, the function f = ‖µ‖2

is an equivariant Morse-Bott function, which gives a stratification of the space X. Using
Mayer-Vietoris, along with some other algebraic topology and equivariant cohomology,
one can use this stratification to compute the equivariant cohomology of the space X with
respect to the equivariant cohomology of the strata. When the G action is free, this tell
us the regular cohomology of the quotient space X/G. In our situation, the Yang-Mills
functional plays the role of the norm-squared of the moment map, and one would hope
that the analysis needed to do equivariant Morse theory isn’t too hard. Unfortunately, the
analysis is very hard. However, not all is lost. If we can find a nice stratification of C (E) =
A (P) that looks like it came from a nice equivariantMorse function, thenwe can still do the
cohomology computations. In our case, we have a candidate for such a stratification. For a
fixedHarder-Narasimhan type µ, letCµ(E) denote the subspace of holomorphic structures
on E whose Harder-Narasimhan filtration has type µ. This subspace is preserved by the
action of GC, and together all these subspaces give a stratification of the space C (E) called
the Harder-Narasimhan stratification.

4. Equivariant Cohomology

References for this material include [13] and [7].

Our goal now is to compute the cohomology of the moduli space of semistable holo-
morphic bundles over X of rank n and degree k, denoted N(n, k), in the case that n and k
are coprime. Recall that N(n, k) has a global quotient description as N(n, k) = Css(E)/GC.
The computation of the cohomology of N(n, k) uses the concept of equivariant cohomol-
ogy, which is a cohomology theory for spaces with the action of a group. Before doing so,
we give a bit of exposition on where equivariant cohomology fits into our story.

Recall that wementioned in passing that a Un-Yang-Mills connection is equivalent to the
choice of someHermitianmatrix, with some conditions on the eigenvalues. Using the cor-
respondence between unitary connections and holomorphic structures, these conditions
actually reflect the fact that the eigenvalues come from the slopes coming from theHarder-
Narasimhan filtration of the corresponding holomorphic bundle. Using the perspective
of unitary connections, Atiyah and Bott managed to show that the Harder-Narasimhan
stratification is equivariantly perfect, i.e. looks like it came from an equivariantly perfect
Morse function. In other words, we can understand the equivariant cohomology of C (E)
as being built from a simple formula involving the equivariant cohomology of the strata
Cµ(E). This gives us a formula for the equivariant cohomology of the semistable strata,
from which we can compute the ordinary cohomology of the quotient N(n, k).
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Definition 4.1. Let G be a topological group group. A classifying space for G is a topo-
logical space BG such that we have a functorial correspondence

{Principal G-bundles P→ X} ←→ {Homotopy classes of maps X → BG}
v

Suppose EG is a contractible spacewith a free action of G. Then the quotientmap EG →
EG/G is a principal G-bundle.

Theorem 4.2. The quotient space BG = EG/G is a classifying space for G, which assigns to a
homotopy class of maps [ f ] : X → BG the principal G-bundle f ∗EG, which is independent of our
choice of representative of f . Furthermore, The spaces EG and EG/G are unique up to homotopy
equivalence.

Since the spaces EG and BG are only well-defined up to homotopy equivalence, we will
call a specific choice of EG and BG a model for EG → BG.

Definition 4.3. Let G be a Lie group and X a smooth manifold with an action of G. The
equivariant cohomology of X, denoted H•G(X, Z), is the ordinary cohomology of the total
space of the associated bundle EG×G X → BG, i.e.

H•G(X, Z) := H•(EG×G X, Z)

v

We note that since any two models for EG → BG are homotopy equivalent, this is well
defined. In addition, we can define the equivariant cohomology over any other coefficient
groupwewant. Intuitively, the equivariant cohomology of X is is something like the regu-
lar cohomology of the quotient space X/G, but this isn’t exactly true when the action isn’t
nice. The difference is essentially that the equivariant cohomology keeps track of stabilizer
subgroups. To see this, note that we have a map EG×G X → X/G taking an equivalence
class [p, x] ∈ EG×G X to the orbit [x] ∈ X/G.

Proposition 4.4. The fiber of EG×G X → X/G over [x] is the quotient space EG/Gx, where Gx
is the stabilizer of any representative of [x].

Proof. The fiber over [x] is the subset {[p, x · g] : g ∈ G} ⊂ EG×G X. equivalently, this is
the subset

{
[p · g−1, x] : g ∈ G

}
. Using representatives of this form then gives the desired

result. �

We note that since EG is contractible and the action of Gx ⊂ G is free on EG, the fiber
over [x] is a model for BGx.

Corollary 4.5. If the action of G on X is free, then the map EG ×G X → X/G is a homotopy
equivalence.

Another useful fact we will use:

Corollary 4.6. If X is contractible, then H•G(X, Z) = H•(BG, Z).

Proof.
H•G(X, Z) = H•G(EG×G X, Z) ∼= H•(EG/G, Z) ∼= H•(BG, Z)

�
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We now return to the computation of the cohomology of N(n, k). The heavy lifting for
this computation comes from the following theorems:
Theorem 4.7. The Harder-Narasimhan strata have no torsion in GC-equivariant cohomology.

Theorem 4.8. Let E→ X be a holomorphic vector bundle with Harder-Narasimhan filtration
0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E

Choose a C∞ splitting of the Harder-Narasimhan filtration, giving us a direct sum decomposition
as C∞ bundles

E =
⊕

i

Di

such that
Ei =

⊕
j<i

Dj

Then we have

H•GC
(Cµ(E), Q) ∼=

r⊗
i=1

H•GC(Di)
(Css(Di), Q)

where GC(Di) denotes the group of smooth bundle automorphisms of Di.

Theorem 4.9. Let kµ denote the real codimension ofCµ(E) inside ofC (E), and let Pt,GC
(X) denote

the GC-equivariant Poincaré series for a space X, i.e.

Pt,GC
(X) := ∑

i
(dim H•GC

(X, Q))ti

Then we have
Pt,GC

(C (E)) = ∑
µ

tkµ Pt,GC
(Cµ(E))

Theorem 4.10. The Poincaré series for BGC is

Pt(GC) =
∏n

k=1(1 + t2k−1)2g

(1− t2n)∏n−1
k=1 (1− t2k)2

where g is the genus of X.

The first theorem tells us that we can work rationally if we need to. The second theorem
tell us thatwe can understand theGC-equivariant cohomology of the strata by understand-
ing theGC-equivariant cohomology of the semistable strata for lower dimensional bundles,
which will give us an inductive procedure for computing the Poincaré series. The third
theorem tells us that the equivariant cohomology of the entire space is a simple expres-
sion in terms of the equivariant cohomology of the strata. Since C (E) is contractible, the
fourth theorem tells us that if we can compute the equivariant cohomology of all the strata
except for the semistable locus, then we can compute the equivariant cohomology of the
semistable strata.

We first compute the codimension of the strata Cµ(E). To do this, we will use some facts
regarding infinitesimal variations of holomorphic structures.
Proposition 4.11. Let E→ X be a holomorphic vector bundle. The infinitesimal variations of the
holomorphic structure on E are given by the Dolbeault cohomology group H1

∂
(X, End(E)).
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We are being purposefully vague when we say “infinitesimal variation of holomorphic
structure." Our main use for the result is to identify the normal directions of the strata
Cµ(E). The isomorphism class of a holomorphic structure on a C∞ vector bundle E is given
by a GC-orbit in C (E), and the infinitesimal variation can be interpreted as the normal di-
rections to this orbit. This gives us a way to compute the codimension of the strata Cµ(E).
From this perspective, the normal directions to Cµ(E) consist of infinitesimal variations
that change the type of the Harder-Narasimhan filtration. Explicitly, we have a holomor-
phic subbundle End′(E) → End(E) consisting of holomorphic endomorphisms of E that
preserve theHarder-Narasimhan filtration. Thenwe can identify H1

∂
(X, End′(E))with the

infinitesimal variations consisting of the directions tangent to Cµ(E). Furthermore, if we
let End ”(E) denote the quotient bundle End(E)/ End′(E), we can identify End ”(E)with
the holomorphic bundle endomorphism that do not preserve the Harder-Narasimhan fil-
tration, which tells us that the complex codimension of Cµ(E) in C (E) is the dimension of
H1

∂
(X, End ”(E)). To compute this, we use Riemann-Roch.

Theorem 4.12 (Riemann-Roch). Let E→ X be a holomorphic vector bundle, where X is genus
g, and let hi(E) = dim Hi

∂
(X, E). Then

h0(E)− h1(E) = c1(E) + (1− g)rank(E)

Because of Riemann-Roch, it suffices to compute the dimension of H0
∂
(X, E) to compute

H1
∂
(X, E), and we want to apply this to the holomorphic bundle End ”(E).

Proposition 4.13.
H0

∂
(X, End ”(E)) = 0

Proof. An element g ∈ H0
∂
(X, End ”(E)) is a global holomorphic endomorphism of E that

does not fix the Harder-Narasimhan filtration. By assuption, there exists some subbun-
dle Ei with i > 0 in the filtration such that g(Ei) 6⊂ Ei. By minimality of i, we have that
g(Ei−1) ⊂ Ei−1. Then let k be the smallest integer such that g(Ei) ⊂ Ek. Then the re-
striction of g to Ek factors through the quotients to a nontrivial bundle homomorphism
Ei/Ei−1 → Ek/Ek−1. We note that both Ei/Ei−1 and Ek/Ek−1 are semistable and satisfy
µ(Ei/Ei−1) > µ(Ek/Ek−1) by the properties of the Harder-Narasimhan filtration. Let K ⊂
Ei/Ei−1 be the smallest holomorphic subbundle containing the kernel, and A ⊂ Ek/Ek−1
the smallest holomorphic subbundle containing the image, giving us the short exact se-
quence of holomorphic bundles

0 K Ei/Ei−1 A 0

Semistability of Ei/Ei−1 implies that µ(A) ≤ µ(Ek/Ek−1), so µ(A) < µ(Ei/Ei−1). How-
ever, semistability of Ei/Ei−1 also implies that µ(K) ≤ µ(Ei/Ei−1), which would imply
that µ(Ei/Ei−1) ≤ µ(A), a contradiction. �

To use Riemann-Roch, we must identify the rank and degree of End ”(E). Since both
of these quantities are topological invariants, we may work in the C∞ category. We first
compute the degree. Since End(E) ∼= E∗ ⊗ E, we have that deg(E) = 0, where we use the
fact that the degree of a bundle is the same as the degree of its determinant line, and the



22 JEFFREY JIANG

formula for the determinant line of a tensor product of bundles. Then since the degree is
additive in exact sequences, we get

deg(End′(E)) + deg(End ”(E)) = 0

We then compute deg(End′(E)), which will tell us deg(End ”(E)). Fix a smooth splitting
of the Harder-Narasimhan filtration, giving us a C∞ decomposition

E =
⊕

i

Di

This gives us the identification as smooth bundles

End′(E) =
⊕
i≥j

Hom(Di, Dj)

Then if we let µ(Di) = ki/n)i, we get

deg(End′(E)) = ∑
i≥j

k jni − kinj

where we use additivity of degree with respect to direct sums and the identification of
Hom(Di, Dj) with D∗i ⊗ Dj. In the case i = j, we get Hom(Di, Dj) = End(Di), which has
degree 0, so we get

deg(End′(E)) = ∑
i>j

k jni − kinj

Negating this gives the degree of End ”(E).

For the rank, this comes easily from the C∞ decomposition

End ”(E) =
⊕
i>j

Hom(Di, Dj)

giving us
rank(End ”(E)) = ∑

i<j
ninj

Putting everything together gives us

dim(H1
∂
(X, End ”(E))) = ∑

i>j
nik j − kinj + ninj(g− 1)

which by our earlier discussion, is the complex codimension of the strata Cµ(E).

5. The Cohomology of the Moduli Spaces N(n, k)

As before, we let E → X denote a C∞ complex vector bundle of rank n and degree k,
where n and k are coprime. Recall that this implies the notions of stability and semistabil-
ity for a holomorphic structure on E coincide in this case.

The theorems in the previous section can be used to compute the equivariant cohomol-
ogy H•GC

(Cµ(E), Z) using an inductive procedure involving the semistable strata for lower
dimensional holomorphic bundle, which in turn lets us compute the GC-equivariant co-
homology of Css(E). However, this does not tell the cohomology of the quotient space
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N(n, k) := Css(E)/GC, since the action of GC on Css(E) isn’t free. To compute the coho-
mology, wemust pass to a quotient of GC that acts freely, and then compute the equivariant
cohomology with respect to that group.

Proposition 5.1. Let ∂E be a stable holomorphic structure on E. Then the stabilizer subgroup of
∂E is the central subgroup C× ⊂ GC.

Proof. Clearly C× is contained in the stabilizer of a holomorphic structure, so it suffices
to show that any automorphism g ∈ GC fixing ∂E is multiplication by an element of C×.
Since g fixes ∂E, we get a direct sum decomposition of E as a holomorphic bundle

E = E1 ⊕ · · · ⊕ E`

where the Ei are eigenbundles of g. We then claim that this decomposition has only one
term, which would verify our claim. Since ∂E is stable, µ(E1) < µ(E). Similarly, we have
that µ(E2 ⊕ · · · ⊕ E`) < µ(E). Furthermore, we have E1

∼= E/(E2 ⊕ · · · ⊕ Ek). The exact
sequence

0 E2 ⊕ · · · ⊕ E` E E1

then implies that the slope of E1 is larger than the slope of E, a contradiction. �

This gives us
H•(N(n, k), Z) = H•

G C
(Css(E), Z)

where G C := GC/C×. To compute the G C-equivariant cohomology, we use:
(1) GC deformation retracts onto G .
(2) G C deformations retracts onto G := G /U1

The first point tells us that
H•GC

(Css(E), Z) ∼= H•G (Css(E), Z)

The second point tells us that we may replace G C with G to compute H•(N(n, k), Z). To
do this, we must first understand the cohomology of the classifying space BG . We need
the following theorem:

Theorem 5.2 (Leray-Hirsch). Let E → X be a fiber bundle with model fiber F such that the
inclusion F ↪→ E of a fiber induces a surjection in rational cohomology. Then

H•(E, Q) ∼= H•(X, Q)⊗ H•(F, Q)

To use this, we use a functoriality property of classifying spaces. The exact sequence

1 U1 G G 1

induces a fibration
BU1 BG

BG

To apply Leray-Hirsch, we want to show that the pullback map induced by BU1 → BG
induces a surjection

H•(BG , Q)→ H•(BU1, Q)
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To do this, we provide a group homomorphism G → U1, such that the composition U1 ↪→
G → U1 give maps of classifying spaces BU1 → BG → BU1 inducing an isomorphism
H•(BU1, Q) → H•(BU1, Q). Fix a point x ∈ X, and let g ∈ G , which we interpret as a
smooth bundle automorphism of E preserving the Hermitian metric. Restricting g to the
fiber Ex and taking the determinant gives us our group homomorphism G → U1. Since
E is rank n, this is a degree n map. Then pullback induced map BU1 → BG → BU1
multiplies the generator of H•(BU1, Q) ∼= Q[x] by n, which is an isomorphism. Therefore,
the map BU1 → BG induces an isomorphism on rational cohomology. We then note that
the Poincaré series for BU1 is

Pt(BU1) =
1

1− t2 = 1 + t2 + t4 + · · ·

So an application of Leray-Hirsch gives us

Pt(BG ) = Pt(G )(1− t2)

The next thing to do is to investigate the relationship between G -equivariant cohomology
and G -equivariant cohomology. Let M be any G -space. The quotient map G → G gives
M the structure of a G -space. Furthermore, it induces a map BG → BG , giving us the
pullback diagram

EG ×G M EG ×G M

BG BG

The map EG ×G M→ EG ×G M is a BU1-bundle, giving us the diagram

BU1 EG ×G M EG ×G M

BU1 BG BG

From this diagram, we can deduce that the map BU1 → EG ×G M induces a surjection on
rational cohomology, so we can apply Leray-Hirsch to the bundle EG ×G M→ EG ×G M,
giving us

H•G (M, Q) ∼= H•(BU1, Q)⊗ H•
G
(M, Q)

In terms of Poincaré series, we have

Pt,G (M) =
Pt,G (M)

1− t2

In our specific case, letting M = Css(E), we get

Pt(N(n, k)) = (1− t2)Pt,G (Css(E))

In theory, this gives us all the results we need to compute the Poincaré series for N(n, k).
However, it is not immediately clear how the pieces fit together. To get a better idea, we
will worth through the case n = 2 and k = 1. We first take inventory of the facts and
formulas we need.
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(1) The Poincaré polynomial for the classifying space of the gauge group is

Pt(BG ) =
(1 + t)2g(1 + t3)2g

(1− t4)(1− t2)2

(2) Let kµ denote the real codimension of the strata Cµ(E) inside of C (E). Then

Pt(BG ) = ∑
µ

tkµ PG (Cµ(E))

(3) Let the Di be the successive quotients coming from the Harder-Narasimhan filtra-
tion of E. Then

Pt,G (Cµ(E)) = ∏
i

Pt,G (Di)
(Css(Di))

(4) Let ni = dim Di and ki = deg(Di). Then the codimension of the strata Cµ(E) is
given by

2 ∑
i>j

nik j − kinj + ninj(g− 1)

We now identify the possible Harder-Narasimhan types for a holomorphic structure on
E. If E is a semistable bundle, then its Harder-Narasimhan filtration is just 0 ⊂ E, and the
Harder-Narasimhan type is (1/2, 1/2). Otherwise, there exists an rank one subbundle
L ⊂ E with µ(L) > µ(E) = 1/2, and the Harder-Narasimhan filration is 0 ⊂ L ⊂ E.
This means that the Harder-Narasimhan type of E is entirely determined by the degree of
L, since we can recover the degree of E/L as 1− deg(L), so the Harder-Narasimhan type
would be (deg(L), 1− deg(L)). For notational convenience, let Cr(E) denote the stratum
corresponding to the type (r + 1,−r). Then we have

Pt,G (Cr(E)) = Pt,G (L)(Css(L))Pt,G (E/L)(Css(E/L))

We note that both L and E/L are both line bundles, so any holomorphic structure is au-
tomatically stable. Therefore, Css(L) = C (L) and Css(E/L) = C (E/L). Furthermore,
our formula for the Poincaré series for the classifying space for the gauge group of a line
bundle gives us

Pt(BG (L)) = Pt(BG (E/L)) =
(1 + t)2g

1− t2

Therefore, we get

Pt,G (Cr(E)) =
(
(1 + t)2g

1− t2

)2

We now need to compute the codimensions kr of the strata Cr(E). Using the formula we
derived earlier, we have

kr = 4r + 2g
Putting everything together, we get the following identity

(1 + t)2g(1 + t3)2g

(1− t4)(1− t2)2 = Pt,G (Css(E)) +
∞

∑
r=0

t4r+2g
(
(1 + t)2g

1− t2

)2

After some manipulations and rearranging, this becomes

Pt,G (Css(E)) =
(1 + t)2g(1 + t3)2g − t2g(1 + t)4g

(1− t4)(1− t2)2
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Finally, using the relationship between G -equivariant cohomology and G -equivariant co-
homology, we get

Pt(N(2, 1)) = (1− t2)Pt,G (Css(E))

=
(1 + t)2g(1 + t3)2g − t2g(1− t)4g

(1− t4)(1− t2)

6. Further reading

There are many directions in which the ideas in the paper were extended. In one such
direction, Donaldson [4] studied the space of solutions to the Yang-Mills equations to
prove his celebrated theorem regarding the intersection forms of four manifolds. A good
reference for the proof would be [5].

In another direction, work of Uhlenbeck and Yau [14] extended the study of slope sta-
bility to holomorphic vector bundles over higher dimensional Kähler manifolds, relating
slop stability to the existence of Hermitian-Yang-Mills connections. Motivated by these
ideas, Yau conjectured that the existence of Hermitian-Einstein connections on Fano man-
ifolds would be related to another algebro-geometric notion of stability calledK-stability.
Recent work of Chen, Donaldson, and Sun [2] has mostly resolved this conjecture.

Another circle of ideas that grew out of the original paper have been the ideas around
Higgs bundles. These were originally introduced by Hitchin [6], and have been used
heavily in work by Simpson [11].
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