The Adams spectral sequence over $\mathscr{A}(1)$

Arun Debray and Richard Wong

August 14, 2020

Overview

- A few general things about the Adams spectral sequence
- Working over $\mathscr{A}(1)$ to compute ko-theory
- Computing the E_{2}-page
- Differentials and extensions

Why we're doing what we're doing today

- The Adams spectral sequence is difficult (e.g. Mahowald's uncertainty principle)
- There's no way to cover an introduction in an hour suitable for working on computations
- In some cases, the Adams spectral sequence dramatically simplifies, but still carries much of the same structure
- This is a useful pedagogical example
- ...but it's not just a toy: calculations over $\mathscr{A}(1)$ do appear in papers

The general Adams spectral sequence

- Pick two spectra X and Y, and a prime p, and let \mathscr{A}_{p} be the $\bmod p$ Steenrod algebra
- The Adams spectral sequence has signature

$$
E_{2}^{s, t}=\operatorname{Ext}_{\mathscr{A}_{p}}^{s, t}\left(H^{*}\left(X ; \mathbb{F}_{p}\right), H^{*}\left(Y ; \mathbb{F}_{p}\right)\right) \Longrightarrow[Y, X]_{p}^{\wedge}
$$

- That is, it computes stable homotopy classes of maps
- Often, $Y=\mathbb{S}$, so it computes stable homotopy groups. $Y=X=\mathbb{S}$ is the most commonly studied example, by far
- For $Y=X=\mathbb{S}$, the Adams spectral sequence is understood up to about $t-s=63$, and blearily up to about degree $t-s=90$ (Adams, May, Mahowald, Barratt, Bruner, Tangora, Isaksen-Wang-Xu, ...)

Variants on the Adams spectral sequence

- You could also begin with some other spectrum E and (assuming something I'll skate over) obtain an "E-based Adams spectral sequence" with E_{2}-page $\operatorname{Ext}_{E^{*} E}^{s, t}\left(E^{*}(X), E^{*}(Y)\right)$
- We took $E=H \mathbb{F}_{p}$, and $E=k o$ is sometimes considered
- $E=B P$ is called the Adams-Novikov spectral sequence and is fairly commonly studied

Simplifying the Adams spectral sequence

- \mathscr{A} is noncommutative and not finitely generated, a.k.a. not fun
- We will work with a simpler replacement for which the key features of the Adams spectral sequence still apply
- Let $\mathscr{A}(1):=\left\langle\mathrm{Sq}^{1}, \mathrm{Sq}^{2}\right\rangle \subset \mathscr{A}_{2}$ - 8-dimensional, still noncommutative

Change-of-rings

- Stong calculated that

$$
\tilde{H}^{*}\left(k o ; \mathbb{F}_{2}\right) \cong \mathscr{A} \otimes_{\mathscr{A}(1)} \mathbb{F}_{2}
$$

- There is a canonical isomorphism

$$
\operatorname{Hom}_{A}\left(B \otimes_{C} D, E\right)=\operatorname{Hom}_{C}(D, E)
$$

and the derived version is

$$
\operatorname{Ext}_{A}^{s, t}\left(B \otimes_{C} D, E\right)=\operatorname{Ext}_{C}^{s, t}(D, E)
$$

- In conclusion,

$$
\operatorname{Ext}_{\mathscr{A}}^{s, t}\left(\widetilde{H}^{*}\left(k o \wedge X ; \mathbb{F}_{2}\right), \mathbb{F}_{2}\right)=\operatorname{Ext}_{\mathscr{A}(1)}^{s, t}\left(\widetilde{H}^{*}\left(X ; \mathbb{F}_{2}\right) ; \mathbb{F}_{2}\right)
$$

- That is, if you want to compute the 2-completed ko-theory of X, you can run the Adams spectral sequence over $\mathscr{A}(1)$, which is much simpler!
- The 7-connected map MSpin \rightarrow ko means this also applies to spin bordism and variants
- We'll work with this simplification

The structure of Ext

- $\operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ is an algebra: elements of $\operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ are represented by extensions $\Sigma^{t} \mathbb{F}_{2} \rightarrow P_{s} \rightarrow \cdots \rightarrow P_{1} \rightarrow \mathbb{F}_{2}$. The multiplication is the Yoneda product compose two extensions
- In the same way, $\operatorname{Ext}\left(M, \mathbb{F}_{2}\right)$ is a module over $\operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$
- Differentials commute with this algebra action, so it's useful to be aware of
$-\operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$ converges to $\pi_{*} \mathrm{ko}$, and this module structure lifts to the $\pi_{*} k o$-action on $\pi_{*}(k o \wedge X)=\widetilde{k o}_{*}(X)$
$\operatorname{Ext}_{\notin \mathcal{A}(1)}^{*, *}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$

So... how do you calculate Ext of stuff?

- Sometimes you can look it up (seriously!) e.g. Beaudry-Campbell
- A short exact sequence of modules induces a long exact sequence in Ext
- Sometimes you have to write down a projective resolution
- A few other tricks in very specific situations

Example: the Joker

Example: Spanish question mark

Example C η

Example: long exact sequence

$$
0 \longrightarrow \Sigma^{3} \mathbb{Z} / 2 \longrightarrow N_{1} \longrightarrow J \longrightarrow 0
$$

Technique: use a computer program

- There are a few programs that calculate Ext over (a subalgebra of) the Steenrod algebra
- One by Bob Bruner, on his website
- Another by Hood Chatham and Dexter Chua: https:
//spectralsequences.github.io/rust_webserver/

Differentials in the Adams spectral sequence

- Adams grading: d_{r} moves one unit left $(t-s$ degree), r units up (s degree)
- h_{0} - or h_{1}-linearity of differentials solves a lot of problems (e.g. if $h_{0} x=0$ and $h_{0} y \neq 0$, the $d_{r} x \neq y$)
- Otherwise, differentials are usually hard, even $d_{2} s$, and even over $\mathscr{A}(1)$

Margolis' theorem is your friend!

- Theorem: $\mathscr{A}(1)$ summands in $H^{*}\left(X ; \mathbb{F}_{2}\right)$ correspond to $H \mathbb{F}_{2}$ summands of ko $\wedge X$
- Upshot: no differentials to or from Ext elements corresponding to an $\mathscr{A}(1)$ summand, and they don't participate in any nontrivial extensions
- In many cases, this (and linearity over $\operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$) suffices to collapse the spectral sequence on the E_{2}-page

Other techniques for computing differentials

- Map to or from a different spectral sequence...
- Use $\operatorname{Ext}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$-algebra structure to propagate differentials
- In low degrees, compute with a different spectral sequence (e.g. Atiyah-Hirzebruch)

Extensions: a few tricks

- Margolis' theorem, of course
- h_{0} lifts to multiplication by 2
- h_{1} lifts to multiplication by $\eta \in k o_{1}$
- $2 \eta=0$, so if $\eta x \neq 0$, then x isn't divisible by 2 . Sometimes this helps
- Otherwise extensions can be pretty tough

What changes if we're not working over $\mathscr{A}(1)$?

- Ext over your subalgebra B is still a module over $\operatorname{Ext}_{B}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right)$. More complicated bad, but more structure good: solves some problems
- Differentials commute with this algebra action
- The module action lifts analogously to $k o_{*}$ acting on $k o_{*}(X)$

Working over other subalgebras of \mathscr{A}

- Working over $\mathscr{A}(2)=\left\langle\mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \mathrm{Sq}^{4}\right\rangle$ gives you $\operatorname{tmf} \wedge X$
- Working over $\mathscr{E}(1)=\left\langle\mathrm{Sq}^{1}, \mathrm{Sq}^{1} \mathrm{Sq}^{2}+\mathrm{Sq}^{2} \mathrm{Sq}^{1}\right\rangle$ gives you $k u \wedge X$

