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Overview

É A few general things about the Adams spectral sequence
É Working overA (1) to compute ko-theory
É Computing the E2-page
É Differentials and extensions



Why we’re doing what we’re doing today

É The Adams spectral sequence is difficult (e.g. Mahowald’s
uncertainty principle)
É There’s no way to cover an introduction in an hour suitable

for working on computations
É In some cases, the Adams spectral sequence dramatically

simplifies, but still carries much of the same structure
É This is a useful pedagogical example
É . . . but it’s not just a toy: calculations overA (1) do appear in

papers



The general Adams spectral sequence

É Pick two spectra X and Y, and a prime p, and letAp be the
mod p Steenrod algebra
É The Adams spectral sequence has signature

Es,t
2 = Exts,t

Ap
(H∗(X;Fp), H∗(Y;Fp)) =⇒ [Y, X]∧p .

É That is, it computes stable homotopy classes of maps
É Often, Y = S, so it computes stable homotopy groups.

Y = X = S is the most commonly studied example, by far
É For Y = X = S, the Adams spectral sequence is understood up

to about t− s= 63, and blearily up to about degree t− s= 90
(Adams, May, Mahowald, Barratt, Bruner, Tangora,
Isaksen-Wang-Xu, . . . )



Variants on the Adams spectral sequence

É You could also begin with some other spectrum E and
(assuming something I’ll skate over) obtain an “E-based
Adams spectral sequence” with E2-page Exts,t

E∗E(E
∗(X), E∗(Y))

É We took E = HFp, and E = ko is sometimes considered
É E = BP is called the Adams-Novikov spectral sequence and is

fairly commonly studied



Simplifying the Adams spectral sequence

É A is noncommutative and not finitely generated, a.k.a. not
fun
É We will work with a simpler replacement for which the key

features of the Adams spectral sequence still apply
É LetA (1) := 〈Sq1, Sq2〉 ⊂ A2 — 8-dimensional, still

noncommutative



Change-of-rings

É Stong calculated that

eH∗(ko;F2)∼=A ⊗A (1) F2

É There is a canonical isomorphism

HomA(B⊗C D, E) = HomC(D, E)

and the derived version is

Exts,t
A (B⊗C D, E) = Exts,t

C (D, E)



É In conclusion,

Exts,t
A (eH

∗(ko∧ X;F2),F2) = Exts,t
A (1)(eH

∗(X;F2);F2)

É That is, if you want to compute the 2-completed ko-theory of
X, you can run the Adams spectral sequence overA (1),
which is much simpler!
É The 7-connected map MSpin→ ko means this also applies to

spin bordism and variants
É We’ll work with this simplification



The structure of Ext

É Ext(F2,F2) is an algebra: elements of Ext(F2,F2) are
represented by extensions ΣtF2→ Ps→ ·· · → P1→ F2. The
multiplication is the Yoneda product compose two extensions
É In the same way, Ext(M,F2) is a module over Ext(F2,F2)
É Differentials commute with this algebra action, so it’s useful

to be aware of
É Ext(F2,F2) converges to π∗ko, and this module structure lifts

to the π∗ko-action on π∗(ko∧ X) =fko∗(X)



Ext∗,∗A (1)(F2,F2)



So. . . how do you calculate Ext of stuff?

É Sometimes you can look it up (seriously!) e.g.
Beaudry-Campbell
É A short exact sequence of modules induces a long exact

sequence in Ext
É Sometimes you have to write down a projective resolution
É A few other tricks in very specific situations



Example: the Joker



Example: Spanish question mark



Example Cη



Example: long exact sequence

0 // Σ3Z/2 // N1
// J // 0

Σ3Z/2 N1 J

0 1 2 3 4 5 6 7 8

0
1
2
3
4
5
6



Technique: use a computer program

É There are a few programs that calculate Ext over (a
subalgebra of) the Steenrod algebra
É One by Bob Bruner, on his website
É Another by Hood Chatham and Dexter Chua: https:

//spectralsequences.github.io/rust_webserver/

https://spectralsequences.github.io/rust_webserver/
https://spectralsequences.github.io/rust_webserver/


Differentials in the Adams spectral sequence

É Adams grading: dr moves one unit left (t− s degree), r units
up (s degree)
É h0- or h1-linearity of differentials solves a lot of problems (e.g.

if h0x = 0 and h0y 6= 0, the drx 6= y)
É Otherwise, differentials are usually hard, even d2s, and even

overA (1)



Margolis’ theorem is your friend!

É Theorem: A (1) summands in H∗(X;F2) correspond to HF2
summands of ko∧ X
É Upshot: no differentials to or from Ext elements

corresponding to anA (1) summand, and they don’t
participate in any nontrivial extensions
É In many cases, this (and linearity over Ext(F2,F2)) suffices to

collapse the spectral sequence on the E2-page



Other techniques for computing differentials

É Map to or from a different spectral sequence. . .
É Use Ext(F2,F2)-algebra structure to propagate differentials
É In low degrees, compute with a different spectral sequence

(e.g. Atiyah-Hirzebruch)



Extensions: a few tricks

É Margolis’ theorem, of course
É h0 lifts to multiplication by 2
É h1 lifts to multiplication by η ∈ ko1

É 2η= 0, so if ηx 6= 0, then x isn’t divisible by 2. Sometimes
this helps
É Otherwise extensions can be pretty tough



What changes if we’re not working overA (1)?

É Ext over your subalgebra B is still a module over ExtB(F2,F2).
More complicated bad, but more structure good: solves some
problems
É Differentials commute with this algebra action
É The module action lifts analogously to ko∗ acting on ko∗(X)



Working over other subalgebras ofA

É Working overA (2) = 〈Sq1, Sq2, Sq4〉 gives you tmf ∧ X
É Working over E (1) = 〈Sq1, Sq1Sq2 + Sq2Sq1〉 gives you ku∧ X


