The Adams spectral sequence over $\mathcal{A}(1)$

Arun Debray and Richard Wong

August 14, 2020

- ► A few general things about the Adams spectral sequence
- Working over $\mathscr{A}(1)$ to compute *ko*-theory
- ► Computing the *E*₂-page
- Differentials and extensions

Why we're doing what we're doing today

- The Adams spectral sequence is difficult (e.g. Mahowald's uncertainty principle)
- There's no way to cover an introduction in an hour suitable for working on computations
- In some cases, the Adams spectral sequence dramatically simplifies, but still carries much of the same structure
 - This is a useful pedagogical example
 - ... but it's not just a toy: calculations over A(1) do appear in papers

The general Adams spectral sequence

- Pick two spectra X and Y, and a prime p, and let A_p be the mod p Steenrod algebra
- The Adams spectral sequence has signature

$$E_2^{s,t} = \operatorname{Ext}_{\mathscr{A}_p}^{s,t}(H^*(X;\mathbb{F}_p),H^*(Y;\mathbb{F}_p)) \Longrightarrow [Y,X]_p^{\wedge}$$

That is, it computes stable homotopy classes of maps

- Often, Y = S, so it computes stable homotopy groups. Y = X = S is the most commonly studied example, by far
 - ► For Y = X = S, the Adams spectral sequence is understood up to about t s = 63, and blearily up to about degree t s = 90 (Adams, May, Mahowald, Barratt, Bruner, Tangora, Isaksen-Wang-Xu, ...)

Variants on the Adams spectral sequence

- You could also begin with some other spectrum *E* and (assuming something I'll skate over) obtain an "*E*-based Adams spectral sequence" with *E*₂-page Ext^{s,t}_{E*E}(*E**(*X*), *E**(*Y*))
- We took $E = H\mathbb{F}_p$, and E = ko is sometimes considered
- E = BP is called the Adams-Novikov spectral sequence and is fairly commonly studied

Simplifying the Adams spectral sequence

- A is noncommutative and not finitely generated, a.k.a. not fun
- We will work with a simpler replacement for which the key features of the Adams spectral sequence still apply
- Let A(1) := (Sq¹, Sq²) ⊂ A₂ 8-dimensional, still noncommutative

Stong calculated that

$$\widetilde{H}^*(ko;\mathbb{F}_2)\cong\mathscr{A}\otimes_{\mathscr{A}(1)}\mathbb{F}_2$$

► There is a canonical isomorphism

$$\operatorname{Hom}_{A}(B \otimes_{C} D, E) = \operatorname{Hom}_{C}(D, E)$$

and the derived version is

$$\operatorname{Ext}_{A}^{s,t}(B\otimes_{C} D, E) = \operatorname{Ext}_{C}^{s,t}(D, E)$$

In conclusion,

$$\operatorname{Ext}_{\mathscr{A}}^{s,t}(\widetilde{H}^{*}(ko \wedge X; \mathbb{F}_{2}), \mathbb{F}_{2}) = \operatorname{Ext}_{\mathscr{A}(1)}^{s,t}(\widetilde{H}^{*}(X; \mathbb{F}_{2}); \mathbb{F}_{2})$$

- That is, if you want to compute the 2-completed ko-theory of X, you can run the Adams spectral sequence over A(1), which is much simpler!
- ► The 7-connected map $MSpin \rightarrow ko$ means this also applies to spin bordism and variants
- We'll work with this simplification

- ► Ext($\mathbb{F}_2, \mathbb{F}_2$) is an algebra: elements of Ext($\mathbb{F}_2, \mathbb{F}_2$) are represented by extensions $\Sigma^t \mathbb{F}_2 \to P_s \to \cdots \to P_1 \to \mathbb{F}_2$. The multiplication is the *Yoneda product* compose two extensions
- ▶ In the same way, $Ext(M, \mathbb{F}_2)$ is a module over $Ext(\mathbb{F}_2, \mathbb{F}_2)$
- Differentials commute with this algebra action, so it's useful to be aware of
- ► Ext(\mathbb{F}_2 , \mathbb{F}_2) converges to $\pi_* ko$, and this module structure lifts to the $\pi_* ko$ -action on $\pi_* (ko \land X) = \widetilde{ko}_*(X)$

 $\operatorname{Ext}_{\mathscr{A}(1)}^{*,*}(\mathbb{F}_2,\mathbb{F}_2)$

So... how do you calculate Ext of stuff?

- Sometimes you can look it up (seriously!) e.g. Beaudry-Campbell
- A short exact sequence of modules induces a long exact sequence in Ext
- Sometimes you have to write down a projective resolution
- A few other tricks in very specific situations

Example: the Joker

Example: Spanish question mark

Example $C\eta$

Example: long exact sequence

Technique: use a computer program

- There are a few programs that calculate Ext over (a subalgebra of) the Steenrod algebra
- One by Bob Bruner, on his website
- Another by Hood Chatham and Dexter Chua: https: //spectralsequences.github.io/rust_webserver/

Differentials in the Adams spectral sequence

- Adams grading: d_r moves one unit left (t-s degree), r units up (s degree)
- *h*₀- or *h*₁-linearity of differentials solves a lot of problems (e.g. if *h*₀*x* = 0 and *h*₀*y* ≠ 0, the *d_rx* ≠ *y*)
- Otherwise, differentials are usually hard, even d₂s, and even over A(1)

Margolis' theorem is your friend!

- ► Theorem: $\mathscr{A}(1)$ summands in $H^*(X; \mathbb{F}_2)$ correspond to $H\mathbb{F}_2$ summands of $ko \land X$
- Upshot: no differentials to or from Ext elements corresponding to an A(1) summand, and they don't participate in any nontrivial extensions
- ► In many cases, this (and linearity over Ext(𝔽₂,𝔽₂)) suffices to collapse the spectral sequence on the *E*₂-page

Other techniques for computing differentials

- Map to or from a different spectral sequence...
- Use $Ext(\mathbb{F}_2, \mathbb{F}_2)$ -algebra structure to propagate differentials
- In low degrees, compute with a different spectral sequence (e.g. Atiyah-Hirzebruch)

- Margolis' theorem, of course
- h_0 lifts to multiplication by 2
- ▶ h_1 lifts to multiplication by $\eta \in ko_1$
- ► $2\eta = 0$, so if $\eta x \neq 0$, then *x* isn't divisible by 2. Sometimes this helps
- Otherwise extensions can be pretty tough

What changes if we're not working over $\mathscr{A}(1)$?

- Ext over your subalgebra *B* is still a module over $\text{Ext}_B(\mathbb{F}_2, \mathbb{F}_2)$. More complicated bad, but more structure good: solves some problems
- Differentials commute with this algebra action
- The module action lifts analogously to ko_* acting on $ko_*(X)$

Working over other subalgebras of \mathscr{A}

- Working over $\mathscr{A}(2) = \langle Sq^1, Sq^2, Sq^4 \rangle$ gives you $tmf \wedge X$
- ► Working over $\mathscr{E}(1) = \langle Sq^1, Sq^1Sq^2 + Sq^2Sq^1 \rangle$ gives you $ku \wedge X$