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Overview

É Generalized (co)homology, but very quickly
É The Atiyah-Hirzebruch spectral sequence; first examples
É Stable cohomology operations and the first nonzero

differential



Generalized cohomology theories

É Cohomology H∗(X; A) is characterized by the
Eilenberg-Steenrod axioms guaranteeing how it behaves on
homotopy equivalences, disjoint unions, cofibrations, and
contractible spaces
É There are many interesting functors which satisfy all of these

axioms except triviality on contractible spaces
É Called generalized cohomology theories
É Central subject of research in algebraic topology, and has been

for decades
É Dually, there are generalized homology theories



Bluff your way through spectra

É Generalized cohomology theories are represented by things
called spectra, objects of a category which is a stabilization of
Top under suspensions
É So a topological space X determines a spectrum Σ∞X, and a

spectrum determines a generalized cohomology theory



Multiplicative structures

É Ordinary cohomology is naturally a ring (on spaces, not
spectra)
É We want versions of this in generalized cohomology
É And it does hold in many examples! But the theory of ring

spectra and multiplicative generalized cohomology theories is
subtle



Examples: ordinary cohomology

É Given an abelian group A, get an Eilenberg-Mac Lane spectrum
HA, which represents ordinary (co)homology valued in A
É Give A a ring structure and HA becomes a ring spectrum
É Okay, honestly, this is kind of a boring example



Examples: K-theory

É There is a ring spectrum KU whose corresponding
cohomology theory is complex K-theory
É This is a 2-periodic spectrum, meaning Σ2KU ' KU
É π∗(KU)∼= Z[t, t−1], with |t|= 2, so π2i(KU) = Z and
π2i+1(KU) = 0
É Often KU∗(X) is denoted K∗(X). K0(X) computes the

Grothendieck group of complex vector bundles on X (assumed
cpt Hausdorff) w.r.t. direct sum



Connective K-theory

É A variant of KU called ku, where we only keep the homotopy
groups in degrees 0 and above
É Called connective (complex) K-theory
É π∗(ku)∼= Z[t], |t|= 2
É Also a ring spectrum



Real K-theory

É Using real instead of complex vector bundles, we obtain an
8-periodic ring spectrum KO
É π∗(KO)∼= Z[η, x, v, v−1] with |η|= 1, |x|= 4, |v|= 8
É So the groups go Z/2, Z/2, 0, Z, 0, 0, 0, Z. . .
É You can sing this to “Twinkle twinkle little star” and it is called

the Bott song

É The connective version (only keep πk for k≥ 0) is denoted ko



Examples: bordism

É Consider the functor which assigns to (reasonable) spaces X
the commutative monoid of closed n-manifolds together with
a map f : M→ X, modulo the submonoid of (M, f) that
“bound,” i.e. there’s a compact (n+ 1)-manifold W and map
g: W→ X with ∂W =M and g|M = f
É This is an abelian group, and in fact this is a generalized

homology theory ΩO
n (X)

É Represented by a Thom spectrum denoted MO
É Many variants given a tangential structure: MSO and ΩSO

∗ for

oriented bordism; MSpin and ΩSpin
∗ for spin bordism, MU and

ΩU
∗ for (stably almost) complex bordism
É Note that MG is not always a ring spectrum, e.g. MPin±



The Atiyah-Hirzebruch spectral sequence

É Let E be a spectrum and X be a space (or spectrum)
É The cohomological AHSS has signature

Ep,q
2 = Hp(X; Eq(pt)) =⇒ Ep+q(X)

and if E is a ring spectrum, this has a multiplicative structure
É The homological AHSS has signature

E2
p,q = Hp(X; Eq(pt)) =⇒ Ep+q(X)



Don’t let coefficients trip you up

É Eq(pt) = πq(E)
É but Eq(pt) = π−qE!
É So, e.g. if E is connective (and X is a space), the

cohomological AHSS is fourth-quadrant



Pictures: homological and cohomological differentials



Convergence

É If E is connective (all negative-degree homotopy groups
vanish), the AHSS is single-quadrant, hence converges
É If X has finitely many nonvanishing cohomology groups, the

AHSS converges
É If neither of these is true, things can get a little cagey
É For example, for some n, KOn(RP∞)∼= Z/2∞, which is not a

finitely generated abelian group!



Example: K∗(CPn)



Quick facts

É For any spectrum E, reduced E-theory of a pointed space X is
E∗(X/∗).
É The maps ∗ → X→ ∗ split off E0,∗

2 = E∗(pt) from the rest of the
AHSS: no differentials, no extension questions
É The Atiyah-Hirzebruch spectral sequence is functorial in both

the spectrum E and the space X: one obtains maps on all of
the Er-pages which intertwine the differentials



The first nonzero differential: motivation

É Fix a spectrum E
É By the first nonzero differential for q ∈ Z, we mean the first

dr : E∗,qr → E∗+r,q−r+1
r that can nonzero in the AHSS for some

input space or spectrum

É If πkE = 0, of course d2s to or from Ep,−k
2 vanish so we skip

those, and so on



Layer cakes and the Atiyah-Hirzebruch spectral sequence

É The AHSS can be constructed by filtering E via its Postnikov
filtration
É Vague idea: a spectrum is a many-tiered delicious cake, with

different layers (Eilenberg-Mac Lane spectra) glued together
by k-invariants (frosting)



k-invariants

É Suppose E is a spectrum with only one nonzero homotopy
group πnE. Then E is (a shift of) an Eilenberg-Mac Lane
spectrum: E ' ΣnHπn(E)
É If E has exactly two nonzero homotopy groups, it might not be

a wedge of (shifts) of EM spectra
É But it does fit into a fiber sequence where the other two pieces

are EM spectra



k-invariants

ΣnHπn(E) // E

ϕ

��
Hπ0(E).

To get this data, take the cofiber of ϕ:

ΣnHπn(E) // E

ϕ

��
Hπ0(E)

k // Σn+1Hπn(E).

This map k is called the k-invariant of E



k-invariants

É For E with just two nonvanishing htpy groups, k= 0 iff E is a
sum of (shifts of) EM spectra
É For a general spectrum, one iterates this procedure, and in

particular there are k-invariants between any i and j with
πk(E) = 0 for i< k< j
É These k-invariants are examples of stable cohomology

operations



Stable cohomology operations

É A stable cohomology operation is a natural transformation
Hm(–; A)→ Hn(–; B) which commutes with the suspension
isomorphism
É Friendly example: the Bockstein β , the connecting morphism

in the long exact sequence in cohomology induced from a
short exact sequence 0→ Z→ Z→ Z/n→ 0
É Over Q, all stable cohomology operations are trivial (i.e.

scalar multiplication)
É Over Z, all stable cohomology operations are torsion: reduce

mod p, do something interesting, then Bockstein back up
É Over Fp, more exciting



The Steenrod algebra at p= 2

É The set of stable cohomology operations
H∗(X;Z/2)→ H∗+k(X;Z/2) forms a graded Z/2-algebra under
composition, denotedA and called the Steenrod algebra
É Generated by Steenrod squares

Sqn : H∗(X;Z/2)→ H∗+n(X;Z/2), n≥ 0, satisfying some
axioms and relations
É For n> 1, definition is a bit technical



Axiomatic definition of Steenrod squares

É (implicit: group homomorphism, naturality, stability)
É Sq0 = id and Sq1 is the Bockstein for

0→ Z/2→ Z/4→ Z/2→ 0
É If |x|= n, Sqn(x) = x2

É If |x|< n, Sqn(x) = 0
É The Cartan formula:

Sqn(xy) =
∑

i+j=n

Sqi(x)Sqj(y),

or, if Sq(x) := Sq0(x) + Sq1(x) + · · · , then Sq(xy) = Sq(x)Sq(y)
É Theorem: these properties uniquely characterize the Steenrod

squares and their action on mod 2 cohomology of spaces



Ádem relations

É A is not free (in fact generated by Sq2n
for all n):

SqiSqj =
bi/2c
∑

k=0

�

j− k− 1
i− 2k

�

Sqi+j−kSqk

É Summary: for any space X, H∗(X;Z/2) is anA -module (not
anA -algebra), and pullback is always anA -module
homomorphism



The first nonzero differential in the cohomological AHSS

É Fix a spectrum E with πq(E) 6= 0, πq+r(E) 6= 0, πk(E) = 0 for
q< k< q+ r
É Theorem: the first nontrivial differential in the cohomological

AHSS from Ep,−q
r+1 to Ep+r+1,−q−r

r+1 is identified with the
k-invariant Hp(–;πq(E))→ Hp+r+1(–;πq+r(E))
É In many cases of interest, this is sufficient information!
É Higher differentials determined by higher cohomology

operations, which are. . . hard



The first nonzero differential in the homological AHSS

É The stable homology operation dual to a given stable
cohomology operation S is the dual under the cap product
pairing
É If S raises degree by r, its dual lowers degree by r
É Theorem: first nonzero differential in the homological AHSS

is the dual stable cohomology operation to the corresponding
k-invariant



Some k-invariants

É In the next few slides, we’ll give examples of spectra and their
k-invariants
É Simplest: complex K-theory: both KU and ku
É 2-periodicity and πoddKU = 0 means there’s just the one

k-invariant, which is β ◦ Sq2 ◦ r: H∗(–;Z)→ H∗+3(–;Z)
É Confusingly, this is sometimes denoted Sq3



k-invariants for KO and ko

É 8-periodicity and zeroes in the homotopy groups means there
are four k-invariants to worry about
É k1 : HZ→ Σ2HZ/2 is Sq2 ◦ r
É k2 : HZ/2→ Σ2HZ/2 is Sq2

É k3 : HZ/2→ Σ3HZ is β ◦ Sq2

É k4 : HZ→ Σ5HZ is β ◦ Sq4



k-invariants for bordism theories

É Unoriented bordism: Thom showed MO is a wedge sum of
shifts of Eilenberg-Mac Lane spectra
É All k-invariants are zero
É The Atiyah-Hirzebruch spectral sequence collapses at E2

without extension problems
É Spin bordism: There is a 7-connected map MSpin→ ko
É Atiyah-Bott-Shapiro, Anderson-Brown-Peterson
É Upshot: in low degrees, we know the k-invariants



k-invariants for MSO and MU

É At p= 2, MSO is a wedge sum of shifts of Eilenberg-Mac Lane
spectra: k-invariants vanish
É For odd primes (MSO) and all primes (MU), each is a sum of

shifts of Brown-Peterson spectra BP
É Relevant k-invariants determined in the original paper of

Brown-Peterson

É Upshot: for MSO, only nonzero k-invariant below degree 8 is
from π0 to π4, and is 3-primary



Stable homotopy theory is easy (easier) over Q

É As we saw, stable homotopy operations are trivial over Q
É So the AHSS is simpler over Q
É But it turns out that all differentials and extension problems

are trivial!
É Even stronger: the∞-category of rational spectra is

equivalent to the∞-category of chain complexes over Q



Thom spectra as a source of more examples

É If V→ X is a virtual vector bundle, there is an associated
Thom spectrum XV

É Important and rich theory that we don’t have time to dig into
É Uses: bordism, orientations and Poincaré duality for

generalized cohomology theories, . . .

É These give us further examples to play with in spectral
sequences



A -actions on Thom spectra

É The Thom isomorphism theorem yields an isomorphism of

graded abelian groups H∗(X;F2)
∼=→ eH∗+rank(V)(XV;F2)

É Not necessarily a ring structure on the cohomology of XV

É Cohomology classes for XV are denoted Ux, where
x ∈ H∗(X;F2) and U has degree rank(V)

É This is not an isomorphism ofA -modules!
É Instead, Sq(U) = w(V), and Sq(Ux) is formally evaluated with

the Cartan formula



Generalized Thom isomorphisms

É The k-invariants of ko only depend on Sq1 and Sq2, so if V is
spin, there should be no difference in the AHSSes for ko∗(X)
andfko∗(XV)
É Stronger theorem: generalized orientation theory gives

conditions on V for the Thom isomorphism to hold in
multiplicative generalized cohomology theories
É HZ: an orientation in the usual sense: w1(V) = 0
É KU and ku: a spinc structure: w1(V) = 0 and βw2(V) = 0
É KO and ko: a spin structure
É G-bordism: a G-structure (if MG is a ring spectrum!)



Example: low-degree spin bordism of a Thom spectrum

É Goal: compute ΩSpin
3 ((BZ/n)V−2), where V is the

two-dimensional rotation representation

É For n odd, V is spin, so this reduces to ΩSpin
3 (BZ/n)

É This is Z/n, and this is sort of trivial

É For n even, V is not spin, and life is more interesting



Input data

É H∗(BZ/n;Z)∼= Z[x]/(nx), |x|= 2
É H∗(BZ/n;Z/2)∼= Z/2[x, y]/?, where either x2 = 0 (n 6= 2) or

x2 = y (n= 2)
É Sq(x) = x+ x2, Sq(y) = y+ y2

É w1(V) = 0, w2(V) = y



Calculation


