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Overview

» Generalized (co)homology, but very quickly
> The Atiyah-Hirzebruch spectral sequence; first examples

> Stable cohomology operations and the first nonzero
differential



Generalized cohomology theories

» Cohomology H*(X;A) is characterized by the
Eilenberg-Steenrod axioms guaranteeing how it behaves on
homotopy equivalences, disjoint unions, cofibrations, and
contractible spaces

» There are many interesting functors which satisfy all of these
axioms except triviality on contractible spaces

» Called generalized cohomology theories

> Central subject of research in algebraic topology, and has been
for decades

» Dually, there are generalized homology theories



Bluff your way through spectra

» Generalized cohomology theories are represented by things
called spectra, objects of a category which is a stabilization of
Top under suspensions

» So a topological space X determines a spectrum %°°X, and a
spectrum determines a generalized cohomology theory



Multiplicative structures

» Ordinary cohomology is naturally a ring (on spaces, not
spectra)

> We want versions of this in generalized cohomology

» And it does hold in many examples! But the theory of ring
spectra and multiplicative generalized cohomology theories is
subtle



Examples: ordinary cohomology

» Given an abelian group A, get an Eilenberg-Mac Lane spectrum
HA, which represents ordinary (co)homology valued in A

» Give A a ring structure and HA becomes a ring spectrum

» Okay, honestly, this is kind of a boring example



Examples: K-theory

» There is a ring spectrum KU whose corresponding
cohomology theory is complex K-theory

» This is a 2-periodic spectrum, meaning ~2KU =~ KU

> 7, (KU) = Z[t,t71], with |t| = 2, so 7,;(KU) = Z and
Tlyi1(KU) =0

» Often KU*(X) is denoted K*(X). K°(X) computes the
Grothendieck group of complex vector bundles on X (assumed
cpt Hausdorff) w.r.t. direct sum



Connective K-theory

> A variant of KU called ku, where we only keep the homotopy
groups in degrees 0 and above

» Called connective (complex) K-theory
> m,(ku) = Z[t], [t] =2

> Also a ring spectrum



Real K-theory

» Using real instead of complex vector bundles, we obtain an
8-periodic ring spectrum KO

> 1, (KO)=Z[n,x,v,v with |n|=1, |x| =4, |v|=8

» So the groups go Z/2, Z/2, 0, Z, 0, 0, 0, Z...

»> You can sing this to “Twinkle twinkle little star” and it is called
the Bott song

» The connective version (only keep 7, for k > 0) is denoted ko



Examples: bordism

» Consider the functor which assigns to (reasonable) spaces X
the commutative monoid of closed n-manifolds together with
amap f: M — X, modulo the submonoid of (M,f) that
“bound,” i.e. there’s a compact (n + 1)-manifold W and map
g: W —> X with 0W =M and g|, =f

» This is an abelian group, and in fact this is a generalized
homology theory Q2(X)

> Represented by a Thom spectrum denoted MO

» Many variants given a tangential structure: MSO and Qfo for
oriented bordism; MSpin and Qipin for spin bordism, MU and
QE for (stably almost) complex bordism

> Note that MG is not always a ring spectrum, e.g. MPin*



The Atiyah-Hirzebruch spectral sequence

> Let E be a spectrum and X be a space (or spectrum)

» The cohomological AHSS has signature
B)! = HP (X FY(pt) = BPH(X)

and if E is a ring spectrum, this has a multiplicative structure

» The homological AHSS has signature

E} , = Hy(XGE (p) = B, (X)



Don’t let coefficients trip you up

> E (pt) = m4(E)
> but E9(pt) = m_4E!

» So, e.g. if E is connective (and X is a space), the
cohomological AHSS is fourth-quadrant



Pictures: homological and cohomological differentials



Convergence

» If E is connective (all negative-degree homotopy groups
vanish), the AHSS is single-quadrant, hence converges

» If X has finitely many nonvanishing cohomology groups, the
AHSS converges

> If neither of these is true, things can get a little cagey

» For example, for some n, KO, (RP*) = 7Z/2°°, which is not a
finitely generated abelian group!






Quick facts

» For any spectrum E, reduced E-theory of a pointed space X is
E*(X/x).

» The maps % — X — * split off Eg’* = E*(pt) from the rest of the
AHSS: no differentials, no extension questions

» The Atiyah-Hirzebruch spectral sequence is functorial in both
the spectrum E and the space X: one obtains maps on all of
the E,-pages which intertwine the differentials



The first nonzero differential;: motivation

» Fix a spectrum E

» By the first nongero differential for q € Z, we mean the first
d.:E" — Ef+r’q_r+1 that can nonzero in the AHSS for some
input space or spectrum

—* . .
» If m; E = 0, of course dss to or from Eg’ vanish so we skip
those, and so on



Layer cakes and the Atiyah-Hirzebruch spectral sequence

» The AHSS can be constructed by filtering E via its Postnikov
filtration

> Vague idea: a spectrum is a many-tiered delicious cake, with
different layers (Eilenberg-Mac Lane spectra) glued together
by k-invariants (frosting)



k-invariants

» Suppose E is a spectrum with only one nonzero homotopy
group 7,E. Then E is (a shift of) an Eilenberg-Mac Lane
spectrum: E ~ 3"Hm,(E)

» If E has exactly two nonzero homotopy groups, it might not be
a wedge of (shifts) of EM spectra

» But it does fit into a fiber sequence where the other two pieces
are EM spectra



k-invariants

S"Hr,(E) E

¢
Hry(E).
To get this data, take the cofiber of ¢:
S"Hr,(E) —E
¢

Hro(E) —— s 1Hr, (E).

This map k is called the k-invariant of E



k-invariants

» For E with just two nonvanishing htpy groups, k =0 iff E is a
sum of (shifts of) EM spectra

> For a general spectrum, one iterates this procedure, and in
particular there are k-invariants between any i and j with
m(E)=0fori<k<j

» These k-invariants are examples of stable cohomology
operations



Stable cohomology operations

» A stable cohomology operation is a natural transformation
H™(—;A) — H"(-; B) which commutes with the suspension
isomorphism

» Friendly example: the Bockstein f3, the connecting morphism
in the long exact sequence in cohomology induced from a
short exact sequence 0 > Z —» Z — Z/n — 0

> Over Q, all stable cohomology operations are trivial (i.e.
scalar multiplication)

» Over Z, all stable cohomology operations are torsion: reduce
mod p, do something interesting, then Bockstein back up

> Over F,, more exciting



The Steenrod algebra atp = 2

» The set of stable cohomology operations
H*(X;Z/2) — H***(X;Z/2) forms a graded Z/2-algebra under
composition, denoted .« and called the Steenrod algebra

» Generated by Steenrod squares
Sq": H*(X;Z/2) —» H*""(X;Z/2), n > 0, satisfying some
axioms and relations
» For n > 1, definition is a bit technical



Axiomatic definition of Steenrod squares

\

(implicit: group homomorphism, naturality, stability)

Sq° = id and Sq' is the Bockstein for
0-5Z/2—>7Z/4—>Z/2—>0

If |x| = n, Sq*(x) = x?
If x| <n, Sq"(x)=0
The Cartan formula:

5q"(o) = . Sq'(x)Sqd(),

i+j=n

or, if Sq(x) := Sq°(x) + Sq'(x) + - - -, then Sq(xy) = Sq(x)Sq(¥)
Theorem: these properties uniquely characterize the Steenrod
squares and their action on mod 2 cohomology of spaces



Adem relations

> .o/ is not free (in fact generated by Sq*" for all n):

icj & j—k—1 i+j—ka k
Sqisg=> (7. JsdTsq
k=0

» Summary: for any space X, H*(X;Z/2) is an .«/-module (not
an ./ -algebra), and pullback is always an .f-module
homomorphism



The first nonzero differential in the cohomological AHSS

> Fix a spectrum E with 7,(E) # 0, 7,..(E) # 0, my(E) = O for
g<k<q+r

» Theorem: the first nontrivial differential in the cohomological
AHSS from E " to EfIIH’_q_r is identified with the
k-invariant HP(—; 714(E)) — HP*Y* (= . (E))

> In many cases of interest, this is sufficient information!

» Higher differentials determined by higher cohomology
operations, which are... hard



The first nonzero differential in the homological AHSS

» The stable homology operation dual to a given stable
cohomology operation S is the dual under the cap product
pairing

» If S raises degree by r, its dual lowers degree by r

» Theorem: first nonzero differential in the homological AHSS
is the dual stable cohomology operation to the corresponding
k-invariant



Some k-invariants

» In the next few slides, we’ll give examples of spectra and their
k-invariants

» Simplest: complex K-theory: both KU and ku
» 2-periodicity and 7m,34KU = 0 means there’s just the one
k-invariant, which is 8 0 Sq% o r: H*(—; Z) — H**3(-; Z)

» Confusingly, this is sometimes denoted Sq,



k-invariants for KO and ko

» 8-periodicity and zeroes in the homotopy groups means there
are four k-invariants to worry about

> ky:HZ — $2HZ/2 is Sq® or
> ko: HZ/2 — ©2HZ/2 is Sq?
> ky: HZ/2 — ©2HZ is f3 0 Sq?
» k,: HZ — ¥°HZis 3 o Sq*



k-invariants for bordism theories

» Unoriented bordism: Thom showed MO is a wedge sum of
shifts of Eilenberg-Mac Lane spectra
» All k-invariants are zero
» The Atiyah-Hirzebruch spectral sequence collapses at E,
without extension problems
» Spin bordism: There is a 7-connected map MSpin — ko

> Atiyah-Bott-Shapiro, Anderson-Brown-Peterson
» Upshot: in low degrees, we know the k-invariants



k-invariants for MSO and MU

> At p =2, MSO is a wedge sum of shifts of Eilenberg-Mac Lane
spectra: k-invariants vanish

» For odd primes (MSO) and all primes (MU), each is a sum of
shifts of Brown-Peterson spectra BP

> Relevant k-invariants determined in the original paper of
Brown-Peterson

» Upshot: for MSO, only nonzero k-invariant below degree 8 is

from 7, to 74, and is 3-primary



Stable homotopy theory is easy (easier) over QQ

> As we saw, stable homotopy operations are trivial over Q
So the AHSS is simpler over Q

> But it turns out that all differentials and extension problems
are trivial!

\

> Even stronger: the co-category of rational spectra is
equivalent to the co-category of chain complexes over Q



Thom spectra as a source of more examples

» If V — X is a virtual vector bundle, there is an associated
Thom spectrum X"

» Important and rich theory that we don’t have time to dig into
> Uses: bordism, orientations and Poincaré duality for
generalized cohomology theories, ...
» These give us further examples to play with in spectral
sequences



./ -actions on Thom spectra

» The Thom isomorphism theorem yields an isomorphism of
graded abelian groups H*(X; F,) — H*k)(xV . F.)
> Not necessarily a ring structure on the cohomology of X"

> Cohomology classes for X" are denoted Ux, where
x € H*(X;F,) and U has degree rank(V)

» This is not an isomorphism of ./-modules!

» Instead, Sq(U) = w(V), and Sq(Ux) is formally evaluated with
the Cartan formula



Generalized Thom isomorphisms

» The k-invariants of ko only depend on Sq' and Sq?, so if V is
spin, there should be no difference in the AHSSes for ko™(X)
and ko*(X")

» Stronger theorem: generalized orientation theory gives
conditions on V for the Thom isomorphism to hold in
multiplicative generalized cohomology theories

» HZ: an orientation in the usual sense: w;(V) =0

» KU and ku: a spin® structure: w;(V) =0 and Sw,(V) =0
» KO and ko: a spin structure

» G-bordism: a G-structure (if MG is a ring spectrum!)



Example: low-degree spin bordism of a Thom spectrum

» Goal: compute Qgpm((BZ /n)V=2), where V is the
two-dimensional rotation representation
» For n odd, V is spin, so this reduces to Qgpm(BZ/n)
» This is Z/n, and this is sort of trivial

» For n even, V is not spin, and life is more interesting



Input data

> H*(BZ/n;Z) = Z[x]/(nx), |x| =2

> H*(BZ/n;Z/2) = 7Z/2[x,y]/?, where either x> = 0 (n # 2) or
X2=y(@n=2)

> Sq(x) =x+x% Sq(y) =y +y?

> wi(V)=0,wy(V)=y






