1. Steenrod squares

If you haven't seen Steenrod squares before, here are some introductory exercises.

- (1) What is the \mathcal{A} -module structure on $H^*(\mathbb{RP}^n; \mathbb{Z}/2)$?
- (2) What is the \mathcal{A} -module structure on $H^*(\mathbb{CP}^n; \mathbb{Z}/2)$?
- (3) How about $H^*(B\mathbb{Z}/n;\mathbb{Z}/2)$? Hint: use the Serre spectral sequence for the fibration $S^1 \to B\mathbb{Z}/n \to BU_1 = \mathbb{CP}^\infty$ to understand the map $H^*(BU_1;\mathbb{Z}/2) \to H^*(B\mathbb{Z}/n;\mathbb{Z}/2)$.
- (4) Compute the \mathcal{A} -action on the cohomology of the Thom spectrum of the tautological bundle $\sigma \to \mathbb{RP}^n$. Geometrically, you might already know that the Thom *space* of this bundle is \mathbb{RP}^{n+1} ; can you see that the Steenrod algebra actions match? (Note: there may be an off-by-one error due to our convention that Thom spectra are of virtual bundles in rank zero, i.e. $\sigma - 1$ instead of σ .)

2. Using Atiyah-Hirzebruch

- (1) What is $K^*(\mathbb{RP}^2)$?
- (2) Let L_n denote a lens space which is the quotient of S^3 by the \mathbb{Z}/n -action it receives as the unit sphere inside \mathbb{C}^2 , where \mathbb{C}^2 carries the representation in which a generator of \mathbb{Z}/n acts by $(e^{2\pi i/n}, e^{2\pi i/n})$. What are the (complex) K-theory groups of L_n ? Can you generalize this to an arbitrary S^3/Γ , where Γ is a finite group of orientation-preserving diffeomorphisms acting freely on S^3 ? (Spoiler: this is worked out in https://arxiv.org/abs/1908.08027, appendix A.)
- (3) For $k \leq 5$, what is $\Omega_k^{\text{Spin}}(BU_1)$?
- (4) If X is any space, show that the Atiyah-Hirzebruch spectral sequence for $\Omega^{SO}_*(X)$ collapses in degrees 5 and below, i.e. if $p + q \leq 5$, then differentials to or from $E^r_{p,q}$ vanish.
- (5) Probably a little trickier: what can you say about $ko^k(B\mathbb{Z}/2)$ for $k \leq 4$? For now, you should have one unresolvable extension problem left but can determine the remaining differentials.

3. A pinch of theory

- (1) In this exercise, you'll prove that the first nonzero differential in the Atiyah-Hirzebruch spectral sequence is the k-invariant.
 - (a) First, suppose E is a spectrum with exactly two nonzero homotopy groups. Then there can only be one differential in the Atiyah-Hirzebruch spectral sequence for E-theory. Show that it coincides with the k-invariant of E.
 - (b) Now for a general choice of E, reduce to the previous case. Hint: every spectrum has an *n*-connected cover $\tau_{\geq n} E \to E$, which is an isomorphism on homotopy groups in degrees $\geq n$, but such that $\pi_k(\tau_{\geq n} E) = 0$ for k < n. Taking the cofiber of this map produces the (n-1)coconnected cover¹ $E \to \tau_{< n} E$; this map induces an isomorphism on homotopy groups in degrees n-1 and below, and $\tau_{< n} E$ has no nonzero homotopy groups in degrees n and above.

¹Occasionally jokingly called the (n-1)-nnected cover.