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Chapter 1

Lecture 1

1.1 Administrative

1.1.1 Schedule

• Monday - Friday will look roughly like:

• Lecture: 9:30 - 11:00

• Office hours? (1:00 - 2:00)

• Problem Sessions: 2:00 - 4:00

1.1.2 Aims

1. You learn stuff

2. I teach stuff

1.1.3 On Lectures

• Text = Weibel - An Introduction to Homological Algebra.

• Notes can be found on my website: https://lachlanpotter.github.io/
or the summer mini course discord server.

• Lectures 1-3: Chain complexes and abelian categories.

• Lecture 4: Projective and injective objects.

• Lecture 5: Derived functors, Tor and Ext.

• Everything is optional, but I hope you will come.
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1.1.4 On Problem Sessions

• I have a way I envisage problem sessions running, I will say more about it
in the afternoon.

• Please do whatever gives you the most benefit.

• I have prepared problems that are tied closely to lecture content, but feel
free to practice whatever/however you like. In particular, any exercise in
Weibel is probably good.

• There is no need to stay for the full two hours. As long as there are people
doing math I will make myself available from 2:00-4:00.

1.2 Introduction

1.2.1 History of Homological Algebra

Disclaimer: I’m not a math historian (regrettably). The following is a summary
of part the Intro to Weibel’s fantastic book.

1890-1940: Ideas started brewing, mostly in the minds of algebraic Topolo-
gists, crystallising in Hn(X), Hn(X;R).

1940 - 1956: People realise that the formalism can be applied to algebraic
objects, birthing: derived functors RiF/LiF and injective/projective modules,
which we will see in lecture.

1956 - 1975: further generalisations emerge: cohomology of sheaves emerge
as foundational in algebraic geometry, the derived category emerges as an alge-
braic analogue of the topologist’s homotopy category.

1.2.2 Motivation

Homological Algebra is a machine for building invariants of objects: topological
spaces, modules, groups, lie algebras, sheaves.

The general slogan is that “left-right exact functors should be seen as the
beginning of a long exact sequence”. For example − ⊗ B is right exact, and
continues to the left via the higher Tor groups, while Hom(A,−) is left exact
and continues to the right via higher Ext groups.

This can be viewed as an algebraic analogue of the LES of (co)homology of
topological spaces.

1.2.3 Course Plan

Define Tor and Ext ! Chapters 1 & 2 of Weibel.
This course has the modest aim of stating the definition of Tor and Ext for

R-modules. This corresponds roughly to Chapter 1 & 2 of Weibel, with some
parts cut out.

In doing so we will develop the formalism that will allow one to (more) easily
read about the following:
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• Cohomology of Sheaves.

• (Co)homology of groups.

• (Co)hmology of Lie algebras.

1−3

Chain Complexes & homology + Abelian categories→
4

injective and projective modules→
5

Derived functors

1.3 Chain Complexes

• Chain complexes, Homology

• Morphisms of Chain Complexes, Quasi-isomorphisms.

1.3.1 Chain Complexes

Definition 1.1. A chain complex of R-modules is a sequence:

C• = (· · · → Cn+1
dn+1→ Cn

dn→ Cn−1 → · · · )

such that dn ◦ dn+1 = 0.

Notation 1.2. We define the following notation

• dn are the differentials of C•.

• Zn := Zn(C•) := ker(dn) the n-cycles.

• Bn := Bn(C•) := im (dn+1) the n-boundaries.

• Hn := Hn(C) := Zn/Bn = ker(dn)/im (dn+1)

• C• is exact at Cn if Hn = 0, i.e. Zn = Bn

The constraint that d2 = 0 implies that Bn ⊂ Zn ⊂ Cn for all n.

Examples 1.3. If X is a simplicial or CW complex (as appropriate), then
C∆
• (X), Csing• (X), CCW• (X) are a chain complexes of abelian groups. The ho-

mology of these complexes give simplicial/singular/cellular homology classes of
X. The elements of Zn are cycles and the elements of Bn are boundaries.

Definition 1.4. A co-chain complex of R-modules is a sequence:

C• = (· · · → Cn−1 dn−1

→ Cn
dn→ Cn+1 → · · · )

such that dn ◦ dn−1 = 0. Essentially, a chain complex with the arrows reversed.

Remark 1.5. We make analogous definitions with appropriate superscripts.
The indices of arrows are always determined by the domain.
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Example 1.6. For any R-module, applying the functor Hom(−,M) to any
chain complex yields a co-chain complex. Applying this to Example 1.3 yields
familiar cohomology co-chain complexes.

If X is a smooth manifold, the k-differential forms on X naturally assemble
into a co-chain complex, with differentials given by dk : Ωk(X) → Ωk+1(X).
The cohomology yield de Rahm cohomology.

1.3.2 Morphisms of Chain Complexes

We wish to form a category of chain complexes, for which we must define mor-
phisms.

Definition 1.7. A morphism of chain complexes f• : C• → D• is a collection
of maps fn : Cn → Dn which assemble into a commutative ladder diagram:

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · · .

dCn+2 dCn+1

fn+1

dCn

fn

dCn−1

fn−1

dDn+2 dDn+1 dDn dDn−1

We often abbreviate the above to the equality df = fd

Exercise 1.8. Prove that a map of chain complexes f• : C• → D• induces a
map f∗ : H∗(C•)→ H∗(D•)

Note 1.9. Demonstrate the diagram chase above

Definition 1.10. A map of chain complexes f• : C• → D• is a quasi-isomorphism
if it induces an isomorphism Hn(C•)→ Hn(D•) for all n ∈ Z.

1.4 Operations on Chain Complexes.

• shifting, direct sums, products, kernels, cokernels, exactness.

Definition 1.11. Given a complex C• we can define (C•[p])n := Cn+p, and
differentials given by (−1)pd. The sign convention is to simplify later notation.

For co-chain complexes we define (C•[p])n := Cn−p.

Slogan 1.12. Positive shifts move things to the right.

Definition 1.13. Given two complexes (C, dC), (B, dB), we can form the direct
sum (C ⊕B, dC⊕B) as:

· · · → Cn ⊕Bn
dC⊕dB→ Cn−1 ⊕Bn−1 → · · ·

where dC⊕dB : Cn⊕Dn→Cn−1⊕Bn−1, c+b 7→ dC(c)+dB(b). This will easily
generalise to direct sums over an arbitrary index set.
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Exercise 1.14 (Weibel page 5). For a family of chain complexes {Ci}i∈I define
the product of chain complexes

∏
i∈I Ci.

Definition 1.15. A complex B• is a subcomplex of C• if Bn is a submodule of
Cn for all n, and the differentials are the restriction of the differentials on C•.

I.e. the inclusionsn(in : Bn ↪→ Cn) assemble into a chain map B• → C•.

Definition 1.16. Given a subcomplex B• ⊂ C•. We define the quotient com-
plex (C•/B•)n := Cn/Bn, with differentials induced from the differentials of
C.

Note 1.17. Demonstrate the diagram chase for C•/B•

Example 1.18. If f• : B• → C• is a map of chain complexes, then {ker(fn)}n∈Z ⊂
B• and {coker(fn)}n∈Z assemble into a quotient complex of C. We call these
complexes ker(f•) and coker(f•) respectively

Exercise 1.19. Check that the differentials for ker(f•) and coker(f•) are well-
defined, and that d2 = 0.

Definition 1.20. One can similarly define im (f•), or alternatively take the
definition to be ker(C• → coker(f•)).

Definition 1.21. A sequence of chain complexes 0 → A•
f•→ B•

g•→ C• → 0 is
exact if ker(f•) = 0, ker(g•) = im (f•) and coker(g•) = 0.

Equivalently 0→ An → Bn → Cn → 0 is exact for all n ∈ Z.

1.5 Long Exact Sequence of Homology

• The Snake Lemma

• LES of Homology

If you have studied algebraic topology you know how useful it can be to
have a long exact sequence associated to a short exact sequence. The aim of
this section is to prove the following theorem.

Theorem 1.22. Let 0 → A•
f→ B•

b→ C• → 0 be a short exact sequence of
complexes. Then there are natural maps ∂ : Hn(C•) → Hn−1(A•) forming a
long exact sequence:

· · · g→ Hn+1(C•)
∂→ Hn(A•)

f→ Hn(B•)
g→ Hn(C•)

∂→ Hn−1(A•)
g→ · · · .

furthermore, ∂ : Hn(C•)→ Hn−1(A•) is defined by:

fn(b) + dn+1(Cn+1) 7→ a+ dn(An), where f ′n−1(a) = dn(b).

Note 1.23. Mention that the precise notion of naturality is spelled out in the
notes and in Weibel Prop 1.3.4.
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Remark 1.24. Natural here means something precise. In particular if one has
a morphism of short exact sequences of chain complexes:

0 A• B• C• 0

0 A′• B′• C ′• 0

f g

f ′ g′

then this gives rise to a commutative ladder diagram of long exact sequences:

· · · Hn(B•) Hn(C•) Hn−1(A•) Hn−1(B•) · · ·

· · · Hn(B′•) Hn(C ′•) Hn−1(A′•) Hn−1(B′•) · · ·

g ∂ f

g′ ∂′ f ′

of course due to Exercise 1.8, the only commutative squares requiring proof are
the ones involving ∂.

The proof of this theorem relies on the snake lemma.

Lemma 1.25 (The Snake Lemma). Consider a commutative diagram of R-
modules:

A B C 0

0 A′ B′ C ′

f

p

g h

i

Then there exists an exact sequence

0→ ker(f)→ ker(g)→ ker(h)
∂→ coker(f)→ coker(g)→ coker(h)→ 0

where ∂ is given by the formula ∂(c) := i−1gp−1(c), c ∈ ker(h).

Proof. go over the construction of the map, extending the diagram with kernels
and cokernels. Mention that there remains to prove the following:

• well definedness of the map (there was a choice made at the p−1 step).

• exactness at the points involving ∂.

We are now ready to prove the main theorem:

Proof. Consider just one differential forming the exact sequence of chain com-
plexes, and extend at the start and end with kernels and cokernels:
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0 0 0

0 Zn(A) Zn(B) Zn(C)

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

An−1/dAn Bn−1/dBn Cn−1/dCn 0

0 0 0

d d d

a diagram chase yields the existence of the dashed lines, and their exactness.
Now taking the exactness of the above rows, we get a diagram of solid

arrows, whose kernels and cokernels are the homology groups we are looking
for. Applying the snake lemma we get the following dashed arrows.

0 0 0

Hn(A) Hn(B) Hn(C)

An/d(An+1) Bn/d(Bn+1) Cn/d(Cn+1) 0

0 Zn−1(A) Zn−1(B) Zn−1(C)

Hn−1(A) Hn−1(B) Hn−1(C)
∂

d d d
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Chapter 2

Lecture 2

2.1 Formalism of Abelian Categories

• Ab ⊂ additive categories.

• Monos, epis, kernels & cokernels.

• Examples in R-Mod and Ch(A).

• Abelian categories.

• Familiar notions in Abelian Categories.

The aim of this section is to define abelian categories, which are an abstrac-
tion the category of R-modules, which take the parts necessary to be able to
perform homological algebra.

Note 2.1. This lecture is very abstract, so if it is all too much, just try to hold
on until the Freyd-Mitchell Embedding theorem in the next lecture.

2.1.1 Ab and Additive Categories

To hone in on the correct definition we have three type of categories, which form
more and more specific objects.

{Ab-categories} ⊃ {additive categories} ⊃ {abelian categories}

Definition 2.2. A category A is an Ab-category if every Hom set HomA(A,B)
is an abelian group, in such a way that the group operation is compatible with
function composition. I.e. for any diagram:

A B C D
f

g

g′
h

we have h(g′ + g)f = hg′f + hgf .
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Definition 2.3. An additive category is an Ab-category with a zero object
0 (i.e. a single object which is terminal and initial) and such that all binary
products exist.

Examples 2.4. The category of non-zero abelian groups is an Ab-category
which is not additive.

The category Ch(R−Mod) is an additive category, with the zero chain com-
plex the obvious choice and the product of chain complexes defined component-
wise.

Remark 2.5. Just the structure of an additive category means that finite co-
products exist, and are isomorphic to the corresponding products. (Take this
as an exercise if you wish). This mirrors the behaviour we see in R-mod.

2.1.2 Monos, Epis, Kernels and Cokernels

First we generalise the notions of injective and surjective.

Definition 2.6. A monomorphism, or a monic is a morphism i : A → B such
that ig = 0 =⇒ g = 0 for all g : A′ → A.

An epimorphism, or an epi is a morphism π : A→ B such that gπ = 0 =⇒
g = 0 for all g : B → B′.

Lemma 2.7. In R-Mod, a morphism f : A→ B is epi iff it is surjective.

Proof. ( ⇐= ) : this direction is clear because for all b′ ∈ B, b′ = π(b) and
therefore g(b′) = gπ(b) = 0.

( =⇒ ) : Consider g : B → B/π(A), then clearly gπ = 0, but since π is epi,
then g = 0 which implies that B = π(A), so π is surjective.

Exercise 2.8. Prove that in R-Mod , a morphism f : A→ B is monic iff it is
injective.

Taking kernels and cokernels are fundamental operations when working in
R-mod, here we give a categorical definition that will work in the abstract
setting.

Definition 2.9. Let f : A→ B be a morphism in an additive category A. The
kernel of f , is the data (K,K → A) of an object K ∈ A and a morphism

K
i→ A. Satisfying the universal property that for all maps g : X → A such

that f ◦ g = 0 there exists a unique map g̃ : X → K such that g = i ◦ g̃. In a
diagram:

X

ker(f) A B

∀g∃!g̃

0

i f

12



Remark 2.10. While often denote the object K by ker(f) it is important to
remember that the kernel is actually the object and the morphism ker(f)→ A.
This data together determines an object up to unique isomorphism, justifying
the terminology “the” kernel.

Definition 2.11. Let f : A → B be a morphism in an additive category A.
The cokernel of f , is the data (coker(f), B → coker(f)) satisfying the following
universal property.

A B coker(f)

Y

f

0

π

∀g
∃!g̃

Lemma 2.12. Kernels and cokernels exist in R-Mod and coincide with the
usual definition of kernel/cokernel, along with their canonical maps.

Proof. Let f : A → B be a morphism and consider π : B → B/f(A). We
wish to show that this map is a cokernel in the sense of Definition 2.11. Indeed
suppose g : B → Y is such that gf = 0, then certainly g(f(A)) = 0, hence by
the universal property of the quotient, g descends to a unique map g̃:

A B B/f(A)

Y

f

0

π

∀g
∃!g̃

Exercise 2.13. Prove the case of kernels.

Exercise 2.14. If f• : A• → B• is a map of complexes, then ker(f•) and
coker(f•) are kernels and cokernels respectively in the sense of Definition 2.11

2.1.3 Abelian Categories

We are now ready for the big definition of this section. We line up each of these
axioms with the corresponding fact in R-Mod for concreteness.

Definition 2.15. An abelian category is an additive category such that:

• All kernels and cokernels exist.

• Every monic is the kernel of its cokernel.

0 A
=ker(π)

B B/f(A)
f π

13



• Every epi is the cokernel of its kernel.

ker(f)

A B 0

A/ker(f)

f

∼F.I.T.

Examples 2.16.

• ModR is an abelian category.

• Ch(ModR) is an abelian category, Exercise 2.14 is the first axiom.

• If A is an abelian category, then Ch(A) is also an abelian category.

• AbShvX , the category of sheaves of abelian groups on a topological space
is also an abelian category, there is also something to prove.

2.1.4 Familiar Notions

Definition 2.17. In an abelian category, define im (f) := ker(coker(f)). Keep
in mind the construction of the cokernel for abelian groups.

Remark 2.18. We finally have defined enough concepts that all definitions
made in lecture 1 now make sense essentially verbatim in any abelian
category. A sequence of morphisms in an abelian category is a chain complex
if d ◦ d = 0, a complex is exact if ker = im at every point, homology = ker/im
etc...

2.2 Chain Homotopies

• Chain Homotopies & induced map on homology

• Split Complexes

2.2.1 Chain Homotopies

Definition 2.19. We say that two chain maps f, g : C → D are homotopic,
denoted f ∼ g if there exist maps sn : Cn → Dn+1 such that f − g = sd + ds.
A map f is null-homotopic if f ∼ 0.

This can be drawn as a non-commutative diagram:

· · · Cn+1 Cn Cn−1 · · ·

· · · Dn+1 Dn Dn−1 · · ·

dn

sn
fn gn

sn−1
dn+1

14



such that the difference between the two vertical arrows is equal to the sum of
the two other paths straight down.

Lemma 2.20. If f•, g• : C• → D• are chain homotopic, then they induce the
same maps on homology.

Proof. By considering f − g we may assume that g = 0, that is f = sd+ ds.
Choose any element of Hn(C), represented by a cycle c ∈ Zn(C). Then

its image in Hn(D) is represented by f(c) = sd(c) + d(sc) = d(sc) ∈ Bn(D).
Therefore f(c) is zero in Hn(D).

2.2.2 Split Complexes

Suppose we have a complex of vectorspaces C•. For any subspace U ⊂ V there is
an isomorphism V ∼= U ⊕V/U , using this we gain the following decompositions:

Cn = Zn ⊕B′n, B′n
∼= Cn/Zn

∼→
d
d(Cn) = Bn−1

Zn = Bn ⊕H ′n, H ′n
∼= Zn/Bn = Hn(C•)

Using these decompositions, we construct the following map:

Cn Zn Bn B′n+1 Cn+1

s

d

∼

These maps satisfy dsd = d. Whence the following definition.

Definition 2.21. A chain complex is called split of there exist maps sn : Cn →
Cn+1 such that dsd = d.

Exercise 2.22. Prove that an exact sequence is split if and only if there are
decompositions Cn ∼= Zn ⊕B′n and Zn = Bn ⊕H ′n.

15



Chapter 3

Lecture 3

3.1 Fundamental Results on Abelian Categories

• Additive functors and exactness.

• Freyd-Mitchell Embedding Theorem and consequences.

• Left exactness of Hom

• Yoneda for additive functors.

3.1.1 Additive Functors and Exactness

Just as abelian categories are categories with extra structure. The correct notion
of morphism of categories are functors respecting that structure.

Definition 3.1. A functor F : A → B is additive if the maps HomA(A,A′)→
HomB(FA,FA′) are group homomorphisms.

Essentially all reasonable functors between abelian categories will be addi-
tive, so this adjective is often dropped in theorem statements.

Definition 3.2. An additive functor F : A → B is left exact if for all exact
sequences 0→ A→ B → C → 0 we have that 0→ FA→ FB → FC is exact.

Remark 3.3. The definitions of exact and right exact functors are left to the
reader.

If A is an abelian category then so is Aop, a left exact contravariant functor
is one that maps exact sequences to left exact sequences. I.e. (0 → A → B →
C → 0) 7→ (0→ FC → FB → FA).

16



3.1.2 Freyd-Mitchell Embedding Theorem

Theorem 3.4 (Freyd-Mitchell Embedding). If A is a small abelian category,
then there is a ring R and an exact, fully faithful functor ι : A →ModR, which
embeds A as a full subcategory in the sense that HomA(M,N) ∼= HomModR

(ιM, ιN).

If you know what a fully faithful functor means great, if not the following
lemma will suffice for understanding.

Lemma 3.5 (Weibel Lemma 1.6.2). If C ⊂ A is a full sub-category of an abelian
category A.

1. C is additive ⇐⇒ 0 ∈ C, and C is closed under ⊕.

2. C is abelian and C ⊂ A is exact ⇐⇒ C is additive and closed under ker
and coker.

Since it may be unclear how to use this theorem in practice, we formulate
some corollaries.

Corollary 3.6 (Corollaries of Freyd-Mitchell). Let ι : A → ModR be the
embedding given by the Freyd-Mitchell embedding theorem.

• A sequence is exact iff it is exact after applying ι.

• A morphism A → B exists iff there exists a morphism ι(A) → ι(B) in
ModR.

• A diagram in A commutes iff its image commutes in ModR.

Corollary 3.7 (The snake lemma in an abelian category). Consider a commu-
tative diagram in any abelian category A:

A B C 0

0 A′ B′ C ′

f

p

g h

i

Then there exists an exact sequence

0→ ker(f)→ ker(g)→ ker(h)
∂→ coker(f)→ coker(g)→ coker(h)→ 0

Proof. Take the small abelian subcategory C of A generated by the objects in
the diagram. Then by the snake lemma for R-Modules there is a map ∂ and an
exact sequence in ModR. Therefore there is a map and a sequence in C which
is exact, and therefore exact in A.
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3.1.3 Properties of Hom

We finish up with a proposition, whose proof can be made psychologically easier
using the Freyd-Mitchell Embedding Theorem.

Proposition 3.8 (Left exactness of Hom). Let M ∈ A be an object in an abelian
category, then HomA(M,−) : A → Ab is a (covariant) left-exact functor.

Proof. Let 0→ A
f→ B

g→ C be exact, we want to show that:

0→ HomA(M,A)
f∗→ HomA(M,B)

g∗→ HomA(M,C)

is exact. We show that ker(g∗) ⊂ im (f∗). By the Freyd-Mitchell embedding
Theorem, we may assume that A,B,C,M are R-Modules.

Suppose that (φ : M → B) ∈ ker(g∗), then g∗(φ) = g ◦ φ = 0. Therefore
im (φ) ⊂ ker(g) = im (f) by exactness of the original sequence. Since f is
injective this means that there exists φ̃ : M → A such that f∗(φ̃) = f ◦ φ̃ = φ.
Therefore φ ∈ im (f∗), as required.

Exercise 3.9. Prove the remaining parts of the above proposition.

3.1.4 Yoneda Lemma for Abelian Categories

Theorem 3.10 (The Yoneda lemma for abelian categories). Let A
f→ B

g→ C
be a sequence of morphisms in an abelian category A. If for all objects M ∈ A
the sequence:

HomA(M,A)
f∗→ HomA(M,B)

g∗→ HomA(M,C)

is exact, then the original sequence is exact.

Proof. Since the proof will only require a choice of finitely many M we may
assume everything is happening in ModR.

gf = 0 : Let M = A, then gf = g∗(f∗(idA)) = 0.
ker(g) ⊂ im (f) : Let M = ker(g) and (i : ker(g) → B) ∈ HomA(ker(g), B).

Then g∗(i) = g ◦ i = 0. Therefore i ∈ ker(g∗) = im (f∗), that is, there exists
some ĩ : ker(g)→ A such that f ◦ ĩ = i. Therefore ker(g) = im (i) ⊂ im (f).

3.2 Adjoint functors

• Adjoints in general.

• Adjoints and exactness.

18



3.2.1 Adjoint Functors in General

Slogan 3.11. Adjoint functors appear everywhere.

Definition 3.12. Let L : C → D and R : D → C be two functors. We say L
is left adjoint to R, and R is right adjoint to L or simply L a R if either of the
two equivalent definitions hold:

1. There exists for all C ∈ C, D ∈ D an isomorphism(bijection):

τC,D : HomD(LC,D)→̃HomC(C,RD)

That is natural in C and D, meaning that for f : C ′ → C and g : D → D′

the following diagrams commute:

HomD(LC,D) HomC(C,RD) HomD(LC,D) HomC(C,RD)

HomD(LC ′, D) HomC(C
′, RD) HomD(LC,D′) HomC(C,RD

′)

τC,D

−◦L(f) −◦f

τC,D

g◦− R(g)◦−
τC,D′ τC,D′

2. There exists two natural transformations (called the counit and unit re-
spectively)

ε : LR =⇒ 1D and η : idD =⇒ RL

such that 1L the following diagrams of natural transformations commute:

L LRL R RLR

L R

Lη

1L

εL

ηR

1R

Rε

Remark 3.13. The equivalence of these two definitions should not be obvious,
but sometimes one is more useful than the other to check/use. In practice most
people simply define τ or ε and η in a way that seema “canonical enough” and
call it a day. We will use defintion 1 more commonly.

Remark 3.14. One extremely common place for adjoints to appear are what I
call “creation-deletion” adjoint pairs, In this case the right adjoint is commonly
some form of “forgetful” functor, while the left adjoint is some sort of “free”
object.

Examples 3.15.

• U : Vectk → Set has left adjoint to R : Set→ Vect, S 7→ kS

• U : Ring→ Set has left adjoint to R : Set→ Ring, S 7→ Z[S]

• U : Ring → Ab has left adjoint to T : Ab → Ring, A 7→ T (A) where
T (A) is the tensor algebra of A.
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• U : ModR → Ab has left adjoint to R⊗Z − : Ab→ModR.

• U : Shv→ PreShv has left adjoint to the sheafification functor PreShv→
Shv.

The most important adjunction pair for the purposes of this course, is the
so called Tensor-Hom adjunction.

Proposition 3.16. Let B be an R-S bimodule, then −⊗RB : ModR →ModS
is left adjoint to HomS(B,−) : ModS →ModR.

Proof. Given A ∈ModR and C ∈ModS morphisms τA,C are given by:

τ : HomS(A⊗R B,C)→ HomR(A,HomS(B,C)), τf(a) : b 7→ f(a⊗ b)

To define an inverse take g ∈ HomR(A,HomS(B,C)), notice that (a, b) 7→
g(a)(b) is an R-bilinear map A×B → C, so it makes sense to define:

ηg : A⊗R B → C, a⊗ b 7→ g(a)(b)

The requisite checks are left to the reader.

3.2.2 Adjoints Functors Between Abelian Categories

A useful corollary is the following:

Corollary 3.17. Let L : A → B and R : B → A be a left-right adjoint pair of
additive functors between abelian categories. Then L is right-exact and R is left
exact.

Proof. Consider an exact sequence 0→ B′ → B → B′′ → 0. Then to check left
exactness of RB′ → RB → RB′′ it’s sufficient by the Yoneda lemma to check
for all A ∈ A the induced sequence of Hom-groups is, but we have:

HomA(A,RB′) HomA(A,RB) HomA(A,RB′′)

0 HomB(LA,B′) HomB(LA,B) HomB(LA,B′′)

∼= ∼= ∼=

Where the bottom row is left exact because Hom(LA,−) is left exact by the
left exactness of Hom. Since this holds for all A ∈ A, 0→ RB′ → RB → RB′′

is exact.

This gives us a slick proof of an essential fact we will use later:

Corollary 3.18. Let B be an R-module, − ⊗R B : ModR → ModR is right
exact, and HomR(B,−) : ModR →ModR is left exact.
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Chapter 4

Lecture 4

4.1 Projective Objects

• Projectives in ModR.

• Projective resolutions.

• Comparison theorem.

• Horseshoe lemma.

4.1.1 Projective Objects

Definition 4.1. We call an object P ∈ A projective, if for every morphism
γ : P → C and epimorphism π : B → C, there exists at least one γ̃ : P → B
such that πγ̃ = γ. This is often written diagrammatically:

P

B C 0

∃γ̃
γ

π

Remark 4.2. Equivalently, projective objects are the objects such that Hom(P,−)
is an exact functor.

There is no uniqueness in the above definition, so there can be many non-
isomorphic projective objects.

Note 4.3. Notice that free modules are projective in ModR.

We can in fact classify the projective objects in ModR.

Proposition 4.4. An R-Module is projective iff it is a direct summand of a
free R-Module.
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Proof. ( =⇒ ) : Let P be projective. Then choose a free module F that surjects
onto P , this yields a short exact sequence:

P

0 K F P 0

∃s idp

π

These exists a splitting s by the projectivity of P , so by the splitting lemma
F ∼= P ⊕ F , as required.

(⇐= ) : Let F = P ⊕K be free, we wish to show that P is projective. Let
p : B → C be an epi and chase the following diagram to see that P is projective.

P

F

P

B C 0

iP

idp

πP
γ

γ◦iP
f

π

We prove here briefly a corollary that will be critically important later.

Corollary 4.5. Projective modules are flat.

Proof. Let P be projective. Then there is a free module F such that F ∼= P⊕K.
To prove that P is flat we need only show that ⊗P preserves injective maps.
Let 0 → A → B be injective, since F is free, hence flat, we have the following
diagram:

0 F ⊗A F ⊗B

0 (P ⊗A)⊕ (F ⊗A) (P ⊗B)⊕ (F ⊗B)

P ⊗A P ⊗B

∼= ∼=

Chasing this diagram tells us that P ⊗A→ P ⊗B is injective.

Remark 4.6. It is tempting to think that projective modules are exactly the
free modules, but this is not always the case. For example if R = R1 × R2 or
R = Mn(F ).
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4.1.2 Projective Resolutions

Definition 4.7. A projective resolution of an object M ∈ A is an exact se-
quence:

· · · → P2 → P1 → P0
ε→M → 0

Definition 4.8. We say that a category A has enough projectives if for all
M ∈ A there exists a projective P and an epi P →M → 0,

Proposition 4.9. If an abelian category has enough projectives, then every
object has a projective resolution.

Proof. Wave your hands at the below diagram (or see Weibel Lemma 2.2.5).

0 0

M1

· · · P2 P1 P0 M 0

M2 M0

0 0 0

d ε

Now there are many possible projective resolutions of a given object, but it
turns out they are related.

Theorem 4.10 (Comparison Theorem, Weibel Theorem 2.2.6). Let P• → M
and Q• → N be projective resolutions and f ′ : M → N a morphism. Then there
exists chain map f : P• → Q• lifting f ′. Furthermore this lift is unique up to
homotopy.

Proof. We wish to show the existence of the following maps:

· · · P2 P1 P0 M 0

· · · Q2 Q1 Q0 N 0

∃ ∃ ∃

We can construct f0 by projectivity. So assume by induction that fi exists for
all i ≤ n, and consider “gluing together” the following diagrams (here we use
exactness of Q• and projectivity of Pn+1).
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Pn+1 Zn(P•) 0 0 Zn(P•) Pn Pn−1

Qn+1 Zn(Q•) 0 0 Zn(Q•) Qn Qn−1

∃fn+1 ∃ fn fn−1

d

Finally we need to prove uniqueness up to homotopy. Suppose f and g are
two lifts of f ′, and let h := f − g. We construct a null-homotopy of h by
induction. Let sn = 0 for n < 0. For n = 0 we have the following diagram
gluing.

P0 P0 M

Q1 Z0(Q•) 0 Q0 N

h0
s0

h0=f0−g0 0=f ′−f ′

Now suppose by induction that si exists for i < n such that h = ds+ sd.
Consider the map hn − sn−1d : Pn → Qn and compute:

d(h− sn−1d) = dh− (dsn−1)d = dh− (h− sn−2d)d = dh− hd = 0

Therefore hn − sn−1d lands in Zn(Q•), whence the following diagram:

Pn Pn Pn−1

Qn+1 Zn(Q•) 0 Qn+1 Qn Qn−1

hn−sn−1d
sn

hn

d

sn−1

gives an sn such that dsn = hn − sn−1d.

Finally we come to a result regarding the interplay of projective resolutions
and exact sequences.

Lemma 4.11 (Horeshoe Lemma). Suppose we are given the following solid
black horseshoe diagram, where the rows are projective resolutions and the
column is exact.

0 0 0 0

· · · P ′2 P ′1 P ′0 A′ 0

P ′2 ⊕ P ′′2 P ′1 ⊕ P ′′1 P ′0 ⊕ P ′′0 A 0

· · · P ′′2 P ′′1 P ′′0 A′′ 0

0 0 0 0

i2 i1

ε′

i0 iA

p2 p1 p0 pA

ε′′
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We can fill in the diagram with the red to a projective resolution of A where in
and pn are the natural inclusions/projections.

Proof. We proceed by induction. Define ε to be the direct sum iAε
′ ⊕ ε̃′′ where

ε̃′′ : P ′′0 → A is a lift of ε′′. Then the following diagram is commutative, with
the exactness of the first column coming from the 9-lemma.

0 0 0

0 ker(ε′) P ′0 A′ 0

0 ker(ε) P ′0 ⊕ P ′′0 A 0

0 ker(e′′) P ′′0 A′′ 0

0 0 0

ε′

i0

p0

ε=iAε
′⊕ε̃′′

ε′′

We then draw the diagram, the red parts coming from exactness of the
projective resolutions:

0

· · · P2 P ′1 ker(ε′) 0

ker(ε)

· · · ker(e′′) P ′′0 ker(ε′′) 0

0

And so the horseshoe is built by induction.

4.2 Injective Objects

• definition

• divisibility and injectivity

• enough injectives in Ab and R-Mod.
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4.2.1 Basic Definitions

Injective objects are categorically dual to projective objects in a precise way
(see Remark 4.14).

Definition 4.12. An object I ∈ A is injective if HomA(−, I) is exact. Dia-
grammatically:

0 A B

I

∀i

∀f
∃f̃

Definition 4.13. An abelian category has enough injectives if every object
M ∈ A injects 0 → M → I into some injective object. An injective resolution
is an exact sequence (0→M → I0 → I1 → · · · ), with In injective.

Remark 4.14. Since injective objects are projective objects of Aop (!!), a cate-
gory having enough injective implies the existence of injective resolutions. Fur-
thermore the comparison and horseshoe lemma hold with arrows reversed.

4.2.2 Injectives in Ab

We begin by describing the injective objects in Ab.

Definition 4.15. An abelian group A is divisible if for all n 6= 0 and a ∈ A
there exists some a′ ∈ A such that na′ = a.

Equivalently, n· : A→ A is surjective for all n 6= 0.

Examples 4.16. Q, Q/Z, Z[1/p]/Z are all divisible, Z,Z/n,Z[1/p] are not.

Proposition 4.17. Divisible groups are injective.

Proof. Let A ⊂ B be injective and f : A → I a homomorphism. Consider the
poset:

P = {(A′, α) : A ⊂ A′ ⊂ B, α : A′ → I, α|A = f}

With (A′, α′) ≤ (A′′, α′′) iff A′ ⊂ A′′ and α′′|A′′ = α′. Now, ascending chains in
P have upper bounds because the increasing union of subgroups is a subgroup.
So by Zorn’s lemma let (B′, β) be a maximal element of P.

If B 6= B′ choose b ∈ B \B′, then either Zb∩B′ = 0 or nbZ for some n 6= 0.
If Zb ∩ B′ = 0, then Zb + B′ ∼= Z × B′ and β extends over Zb + B′ by the

formula β̃(nb, b′) := β(b′), contradicting maximality.
If Zb ∩ B′ = nbZ then Zb + B′ ∼= Z × B′/(n,−nb)Z. Let β(nb) = i, then

since I is divisible i = ni′ for some i′ ∈ I. We can extend β by the formula:

β′ : Zb+B′ → I, rb+ b′ 7→ ri′ + β(b′)

which is well-defined because of the above isomorphism.
Both cases contradict maximality, which means that B′ = B, as required.
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Fact 4.18. The categories Ab and ModR have enough injectives. See the
exercise sheet or Weibel Pages 39 & 40

Fact 4.19. If A has enough injectives/projectives, then so does Ch(A).
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Chapter 5

Lecture 5

5.1 δ-functors

• definition

• examples

• morphisms of δ-functors

• universality

5.1.1 Definition and Examples of δ-functors

We wish to formulate a universal property by which to eventually reason about
derived functors.

Definition 5.1. A (covariant) homological δ-functor T : A → B between
abelian categories, is the data of:

• a sequence of functors Tn : A → B for n ≥ 0

• for every exact sequence 0→ A→ B → C → 0 a collection of morphisms
δn : Tn(C)→ Tn−1(A)

such that:

1. For each SES 0→ A
f→ B

g→ C → 0 there is an LES:

· · · Tn+1(g)→ Tn+1(C)
δn+1→ Tn(A)

Tn(f)→ Tn(B)
Tn(g)→ Tn(C)

δn→ Tn−1(A)
Tn−1(g)→ · · · .

2. For each morphism of SESs

(0→ A
f→ B

g→ C → 0)→ (0→ A′
f ′→ B′

g′→ C ′ → 0)
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a commutative diagram

Tn(C) Tn−1(A)

Tn(C ′) Tn−1(A′)

δ

δ′

Remark 5.2. To get the definition of a cohomological delta functor reverse
the indices, to get the contravariant version swap A and C appropriately (see
Weibel)

Examples 5.3. • The prototypical example of a homological δ-functor is
(Hn) : Ch≥0(A)→ A.

• A trivial example is if T0 is an exact functor and Tn = 0∀n > 0.

Exercise 5.4. Consider the functors Ab→ Ab, T0(A) := A/pA and T1(A) =
{a ∈ A : pa = 0}. Show that (T0, T1, 0, ...) form a homological δ functor.

5.1.2 Morphisms of δ-functors

We just defined some objects, so we ought to define morphisms.

Definition 5.5. A morphism ϕ : S• → T• of δ-functors is a sequence of natural
transformations ϕn : Sn → Tn commuting with all δ maps coming from short
exact sequences.

Slogan 5.6. Essentially, for every SES there exists a commutative ladder dia-
gram between the LESs associated to S• and T•.

We are now in position to define a universal property.

Definition 5.7. A homological δ-functor T is universal if for any δ-functor
S and natural transformation f0 : S0 → T0 there exists a unique morphism
{fn : Sn → Tn} extending f0.

Remark 5.8. It is perhaps not obvious that the correct definition of a coho-
mological δ-functor goes in the other direction. I.e. T is universal if any natural
transformation f0 : T0 → S0 extends uniquely to f : T → S.

Example 5.9. Both δ-functors of Example 5.3 are universal, though H∗ being
universal will take some time to prove.

Question 5.10. If T0 := F : A → B is an additive functor between abelian
categories, we can ask whether there is any δ-functor extending T0. Certainly it
is necessary, but insufficient for T0 to be right exact. We will develop a sufficient
condition in the next sections.
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5.2 Derived functors

• construction & well-definedness.

• derived functors are δ-functors.

• derived functors are universal.

5.2.1 construction of derived functors.

We have now laid the groundwork to make the following central definition.

Construction 5.11. Let F : A → B be a right exact functor, and suppose that
A has enough projectives. We define the left derived functors of F , denoted
(LiF )i≥0 by the following 3 step process.

Step 1: For every object A ∈ A choose a projective resolution:

P• → A = (· · · → P2 → P1 → P0 → A→ 0)

Step 2: Apply F and drop A from the complex:

FP• = (· · · → FP2 → FP1 → FP0 → 0)

Step 3: Take homology:

Li(A) := Hi(FP•) = ker(FPi → FPi−1)/im (FPi+1 → FPi)

Remark 5.12. It is left to the reader to define right derived functors using
injective resolutions.

There are still things to check to justify calling these the left derived functors
of F , we encapsulate these in the following theorem.

Theorem 5.13. Let F : A → B be a right exact functor, and suppose that A
has enough projectives, then:

1. Any map f : A→ A′ induces a map LiF (f) : LiF (A)→ LiF (A′).

2. LiF are additive functors.

3. Different choices of projective resolutions yield naturally isomorphic func-
tors. In particular, the isomorphism class of objects LiF (A) are indepen-
dent of the choice in step 1.

Proof. 1. Consider a morphism f : A → A′, and projective resolutions of
both objects. By the comparison lemma, there exists a chain map:

P• A

P ′• A′

∃f• f

This induces a unique map Hi(FP•)→ Hi(FP
′
•), since f• is unique up to

homotopy.
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2. To prove that Li is functorial consider the following:

P• A

P ′• A′

P ′′• A′′

f•

(g◦f)•

f

g• g

Since both are lifts of g ◦ f we have a chain homotopy (g ◦ f)• ∼ g• ◦ f•.
Therefore LiF (g ◦ f) = LiF (g) ◦ LiF (f). Additivity is left to the reader.

3. Apply the argument of 2. with A = A′ = A′′ and P ′′• = P• to get the maps
forming a natural isomorphism.

Exercise 5.14. Prove that L0F (A) ∼= F (A) and L0F (f) = F (f) under that
identification.

5.2.2 Derived Functors as δ-Functors

One of the features of derived functors that makes them so powerful is the
existence of long exact sequences associated to short exact sequences. Here we
prove that derived functors for universal δ-functors.

Theorem 5.15 (Weibel Theorem 2.4.6). The derived functors L•F form a
homological δ-functor.

Proof. We prove the existence of the δ maps, but omit the proof of naturality.
Details can be found in Weibel.

Let 0 → A′ → A → A′′ → 0 be a short exact sequence. Applying the
Horseshoe lemma, we have projective resolutions:

P ′• A′

P• A

P ′′• A′′

with Pn = P ′n ⊕ P ′′n . Therefore since the sequence of complexes P ′• → P• → P ′′•
is split exact, the maps of complexes FP ′• → FP• → FP ′′• is still exact, the
corresponding LES of homology is:

· · · → LnF (A)→ LnF (A′′)
δ→ Ln−1(A′)→ Ln−1(A)→ · · ·

providing us with the required δ maps.
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Theorem 5.16 (Weibel Theorem 2.4.7). The left derived functors L∗F of a
right exact functor F : A → B form a universal δ-functor.

Proof. We give only a proof indication. Suppose T∗ is a homological δ-functor
and φ0 : T0 → L0F is a natural transformation. We need to show that this
extends to a unique map of δ-functors φ∗ : T∗ → L∗F .

We construct the natural transformation by induction. Suppose there exist
already φi : Ti → LiF for i < n commuting with all δ maps. For A ∈ A, since A
has enough projectives choose a SES 0→ K → P → A→ 0 with P projective.
We have the following diagram:

Tn(A) Tn−1(K) Tn−1(P )

LnF (P )= 0 LnF (A) Ln−1F (K) Ln−1F (P )

φn φn−1 φn−1

The blue exists and is unique by a diagram chase.
One then checks that the φn do not depend on the choice of P , and then

that they commute with all δ maps.

5.3 Tor and Ext

• Tor and Ext definitions

• Balancing Tor and Ext.

We are now in a position to make the following definitions, which were the
aim on the mini-course.

We have seen that the category ModR has both enough injective and pro-
jective objects, so the left/right derived functors of all right/left exact functors
coming out of ModR exist. We are in good shape to make the following defini-
tions.

Definition 5.17. Define TorRi (A,B) := Li(−⊗B)(A) ∼= Li(A⊗−)(B).

Definition 5.18. Define ExtiR(A,B) := Ri(HomR(A,−))(B) ∼= Ri(Hom(−, B))(A).

Remark 5.19. Note that the contravariance of HomR(−, B) means that com-
puting Ri(HomR(−, B))(A) requires taking a projective resolution of A.

Remark 5.20. There is a BIG ISSUE with the above definitions. We actually
gave two different definitions, and claimed they were isomorphic. Let’s remedy
this situation.

Theorem 5.21 (Balancing Tor). For R-modules A and B, there is an isomor-
phism Li(−⊗B)(A) ∼= Li(A⊗−)(B).
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Proof. To compute the left hand side take a projective resolution A← P•, and
for the right hand side a projective resolution B ← Q•. We take the “tensor
product” of these two resolutions to get a double complex:

...
...

...
...

0 P2 ⊗B P2 ⊗Q0 P2 ⊗Q1 P2 ⊗Q2 · · ·

0 P1 ⊗B P1 ⊗Q0 P1 ⊗Q1 P1 ⊗Q2 · · ·

0 P0 ⊗B P0 ⊗Q0 P0 ⊗Q1 P0 ⊗Q2 · · ·

A⊗Q0 A⊗Q1 A⊗Q2 · · ·

0 0 0

Since the Qi and Pi are projective, the rows and columns ending in 0 are
all exact, since they are Pi ⊗ − applied to an exact sequence, and the Pi are
projective, hence flat (Corollary 4.5).

One concludes by defining zig-zag maps Li(A ⊗ −)(B) ↔ Li(− ⊗ B)(A)
via diagram chase. Once one knows it is well-defined, we can check that the
composition is the identity. Therefore we have constructed an isomorphism.

Exercise 5.22. Prove the analogous result for Ext∗R. Everything should work
the same, just ensure that your arrows end up pointing in the right directions
and that you know why the important columns/rows are exact.

Corollary 5.23 (Classification of flat modules).
For an R-Module B, the following are equivalent:

1. TorRi (A,B) = 0 for all A ∈ModR and i > 0.

2. TorR1 (A,B) = 0 for all A ∈ModR.

3. −⊗B is an exact functor. I.e. B is a flat R-module.

Proof. Certainly 1. =⇒ 2..
For 2. =⇒ 3. If 0→ A′ → A→ A′′ → 0 is exact, then by the LES for Tor:

· · · → TorR1 (A′′, B)
=0

→ A′ ⊗B → A⊗B → A′′ ⊗B → 0

Therefore −⊗B is exact.
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For 3 =⇒ 1 note that (− ⊗ B, 0, ...) and L∗(− ⊗ B) are both universal
δ-functors with T0 = −⊗B. Therefore for i > 0:

TorRi (A,B) := Li(−⊗B)(A) ∼= 0
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