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These course notes’ main objective is to introduce a classical invariant of quadratic forms
on Z/2-vector space, and its many applications. We will assume familiarity with 4-manifolds,
and knot theory, but these notes should be largely self-contained. We will start with a
short review of Seifert Forms, Seifert Matrices, and S-equivalence. Then we will introduce
quadratic forms over Z/2 and provide a complete invariant of these quadratic forms (The
Arf-invariant). Next, we will see how we can use quadratic refinements of Seifert Matrices
to give us an Arf-Invariant for knots. Furthermore, we will connect the Arf-Invariant to
4-dimensional topology first by proving the Arf-invariant obstructs knots being slice , then
using the Arf-Invariant to prove a famous restriction of the signature of Spin 4-manifolds
(Rokhlin’s Theorem). Lastly, we will provide an invariant for Integer Homology 3-spheres,
and highlight recent research using the Arf-invariant.

1. Review of Seifert Matrices

1.1. Presentation Matrices.

Date: January 2024.
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Definition 1.1. Let M is a module over a commutative ring R. M is 2 free if any element in
M can be uniquely expressed as a linear sum of elements in a base. A finite presentation for
M is an exact sequence

F
α−→ E

ϕ−→M → 0

where E and F are free R−modules with finite bases. If α is represented by matrix A with
respect to bases e1, · · · , em and f1, · · · , fn of E and F, then the matrix A, of m rows and n
columns, is a presentation matrix for M. Since ϕ is a surjection, the images of (em) can be
thought of as generators for M, and the images of fn as relations amongst those generators.
Theorem 1.2. Any two presentation matrices A0 and A1 for M differ by a sequence of matrix
moves of the following forms and their inverses:

i Perutation of rows or columns;

ii Replacement of the matrix A0 by A1

[
A 0
0 1

]
;

iii Addition of an extra column of zeros to the matrix A0;
iv Addition of a scalar multiple of a row (or column) to another row (or column).

1.2. Construction Modulo Proofs.

Proposition 1.3. Suppose that F is a connected, compact, orientable surface with non-empty
boundary, locally flat in S3. Then the homology groups H1(S

3 − F ;Z) and H1(F ;Z) are
isomorphic, and there is a unique non-singular bilinear form

β : H1(S
3 − F ;Z)×H1(F ;Z) → Z

with the property that β([c], [d]) = lk(c, d) for any oriented simple closed curves c and d in
S3 − F and F respectively.
Proof outline. The isomorphism between H1(S

3 − F ;Z) and H1(F ;Z) given by Alexander
Duality and Poincare Duality. For a given surface in S3, F one can show H1(F ;Z) is
isomorphic to

⊕
2g+n−1 Z and we can realize the generators of this group as a set of simple

closed curves on F, {[fi]}. Now consider a regular neighborhood of F called V. F ↪→ V is
a homotopy equivalence and ∂V = F ⊔−F. The inclusion of ∂V ↪→ V will induce a map
on homology mapping one set of generators F to F and −F to zero. Furthermore, the
orientations of [ei] half the generators of H1(∂V ;Z) can be chosen so that lk(ei, fj) = δij.
Lastly we note that by a Mayer-Vietoris argument H1(S

3−F ) ∼= H1(S
3−V ) hence generated

by the curves {[ei]}
Now define

β : H1(S
3 − F ;Z)×H1(F ;Z) → Z

by β([ei], [fj]) = δij. Now suppose [c] ∈ S3 − F, [d] ∈ F are any oriented simple closed
curves. You can represent both as linear combinations of generating elements and then note
lk(c, fj) = [c] = λiei = λi. Consider this similarly for [d], and we arrive at β([c], [d]) =
lk(c, d). □

Definition 1.4. Associated to the Seifert surface F for an oriented link L is the Seifert form
α : H1(F ;Z)×H1(F ;Z) → Z

defined by α(x, y) = β((i−)∗x, y). i
± is defined as the image of F ⊂ S3 − (F × [−1, 1]) under

the inclusion map. The positive and negative signs are to specify if F is included to the top
or bottom of F × [−1, 1], where S3 − (F × [−1, 1]) ≃ S3 − F.
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Taking a basis {[fi]} for H1(F ;Z) with a dual β basis {[ei]} for H1(S
3 − F ;Z) as before,

α is represented by the Seifert matrix A, where

Aij = α([fi], [fj]) = lk(f−
i , fj) = lk(fi, f

+
j )

An immediate consequence is that H1(S
3 − F ;Z), [f−

i ] =
∑

iAij[ei], and [f+
j ] =

∑
j Aij[ej].

Theorem 1.5. Suppose that F1 and F2 are Seifert surfaces for an oriented link L in S3. Then
there exists a sequence of Seifert surfaces Σ1,Σ2, · · · ,ΣN , with Σ1 = F1, ΣN = F2, such that
for each i, either Σi is obtained from Σi−1 or Σi−1 is obtained from Σi by surgery along an
arc embedded in S3, or related by isotopy.

Proof. Lickorish Chapter 8 □

Definition 1.6. Let A be a square matrix over Z . An elementary enlargment of A is a matrix
B of the form

B =

A ξ 0
0 0 1
0 0 0

 , or

A 0 0
ητ 0 0
0 1 0


for some column ξ or row ητ . The matrix A is called the elementary reduction of B.

Definition 1.7. Let A and B be square matrices. A is unimodular congruent to B if there
exists a square matrix P such that B = P τAP, where detP = ±1.

Definition 1.8. Square matricies A and B over Z are called S−equivalent if they are related by
a sequence of elementary enlargements, elementary reductions and unimodular congruences.

Theorem 1.9. Let A and B be Seifert matrices for an oriented link L. Then A and B are
S−equivalent.

2. Arf Invariant

2.1. The Arf-invarint of a quadratic form. Let V be a finite dimensional vector space over
Z /2Z .

Definition 2.1. A function q : V → Z /2Z is called a quadratic form if there exists a associated
bilinear form I(x, y) = q(x+ y)− q(x)− q(y) over Z /2Z .

Remark 2.2. Note that I is symmetric in that I(x, y) = I(y, x), and alternating I(x, x) =
q(2x)− 2q(x) = 0, and q(0) = 0.

Definition 2.3. A quadratic form q is called non-degenerate if its bilinear form I is non-
degenerate.

Definition 2.4. Let ⟨−,−⟩ : V ⊗ V → k be a bilinear form (k in general is a ring, but is
typically taken to be a field). A quadratic function q : V → k is called a quadratic refinement
of ⟨−,−⟩ if

⟨−,−⟩ = q(v + w)− q(v)− q(w) + q(0)

for all v, w ∈ V. If such a q is indeed a quadratic form in that q(tv) = t2q(v) then q(0) = 0
and ⟨v, v⟩ = 2q(v). This means that a quadratic refinement by a quadratic form always exists
when 2 ∈ k is invertible.
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We will later see that one way to express quadratic refinements is by characteristic elements
of a bilinear form. Now let us move over to an example:

Example 2.5. Let U = (Z /2Z)2 have a basis a, b. There is only one non-degenerate symmetric
bilinear form I on U given by I(a, a) = I(b, b) = 0 and I(a, b) = 1. Define the quadratic
forms q0, q1 : U → Z /2Z by the formulas q0(a) = q0(b) = 0, q0(a + b) = 1, q1(a) = q1(b) =
q1(a+ b) = 1. The associated bilinear forms of both q0 and q1 equal the form I. However, the
quadratic forms q0 and q1 are not equivalent since the form q0 sends a majority of vectors of
U to 0 while q1 sends a majority of vectors of U to 1.

Claim 2.6. It turns out that any other any other non-degenerate quadratic form q on U is
equivalent to either q1 or q0.

Proof of claim. Consider the form q with q(a) = 0 and q(b) = 1. We preform a change of
basis to a′ = a, b′ = a + b to get q(a′) = 0 and q(b′) = q(a + b) = I(a, b) + q(a) + q(b) = 0.
Thus q is equivalent to q0. □

Definition 2.7. A bilinear form is symplectic if it is bilinear, alternating, and non-degenerate.
A given basis ei, fi for a bilinear form ω is called a symplectic basis if ω(ei, ej) = 0 =
ω(fi, fj), ω(ei, fj) = δij.

Lemma 2.8. For any non-degenerate quadratic form q : V → Z /2Z, there exists a symplectic
basis. In particular, dim V is even.

Proof. Choose a basis in V, then the form I(−,−) is given by a matrix I with detI = 1,
and I(x, y) = x · Iy. If x ̸= 0 there exists u such that x · u = 1, and hence I(x, y) = 1 for
y = I−1u. The vectors x and y are linearly independent because I(x, y) = 1; in particular,
dimV ≥ 2.
Choose a new basis in V with the first two vectors x and y. The matrix I in this new basis
takes the form [

H ∗
∗ I0

]
where H =

[
0 1
1 0

]
.

By elementary transformation it can be turned into
[
H ∗
∗ I1

]
, and induction completes the

proof. □

Definition 2.9. Let q : V → Z /2Z be a non-degenerate quadratic form, and ai, bi, i =
1, · · · , n, a symplectic basis in V. Define the Arf-invariant of q by the formula

Arf(q) =
n∑

i=1

q(ai)q(bi) ∈ Z /2Z

Now we need show that Arf(q) is independent of the choice of a symplectic basis. This
will follow from the upcoming study of the non-degenerate quadratic forms over Z /2Z .

Example 2.10. The forms q0, q1 : U → Z /2Z from the example above have Arf-invariants
Arf(q0) = 0 and Arf(q1) = 1. Thus, the Arf-invariant provides a complete classification
of non-degenerate quadratic forms on U. We will prove that the Arf-invariant completely
classifies quadratic forms in general.

Lemma 2.11. On U ⊕ U, the forms q0 + q0 and q1 + q1 are equivalent.
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Proof. Note that q0 + q0 and q1 + q1 have the same associated bilinear form on U ⊕ U. Let
aj, bj, j = 1, 2, be a basis for U ⊕U so that aj, bj form a symplectic basis on the jth copy of
U. If ψi = qi + qi for i = 0, 1, then ψ0(aj) = ψ0(bj) = 0 and ψ1(aj) = ψ1(bj) = 1, j = 1, 2.
Choose a new basis for U ⊕ U,

a′1 = a1 + a2, b
′
1 = b1 + a2, a

′
2 = a2 + b2 + a1 + b1, b

′
2 = b2 + a1 + b1.

This defines a symplectic basis and ψ1(a
′
j) = ψ0(aj) and ψ1(b

′
j) = ψ0(bj), j = 1, 2 so that ψ1

is equivalent to ψ0. □

Lemma 2.12. Let q : V → Z /2Z be a non degenerate quadratic form where dimV = 2m.
Then q is equivalent to q1 + (m− 1)q0 if, with respect to some basis, Arf(q) = 1. Then form
q is equivalent to mq0 if Arf(q) = 0.

Proof. If ai, bi, i = 1, · · · ,m, is a symplectic basis for V and if Vi is the subspace spanned
by ai, bi, let ψi denote the restriction of q onto Vi. it is obvious that q =

∑
ψi, where each

ψi is equivalent to either q0 or q1. By the previous lemma, 2q0 = 2q1, so q is equivalent to
either mq0 or q1 + (m− 1)q0, but Arf(mq0) = 0, and Arf(q1 + (m− 1)q0), which implies the
result. □

To complete the study of non-degenerate quadratic forms over Z /2Z, it remains to show
that φ1 = q1 + (m − 1)q0 and φ0 = mq0 are not equivalent. To show this we prove the
following lemma:

Lemma 2.13. The quadratic form φ1 sends a majority of elements of V to 1 ∈ Z /2Z, while
φ0 sends a majority of elements to 0 ∈ Z /2Z .
Proof. Proof by induction: (Case m=1), is trivial. Given a non-degenerate quadratic form
φ on V, let p(φ) = # of v such that φ(v) = 1, similarly let n(φ) = # of v such that φ(v) = 0.
Since, dim(V ) = 2n and can be given a symplectic basis we can conclude n(φ)+p(φ) = 22m.
The functions p and n satisfy the the identities p(φ + q0) = 3p(φ) + q0(v) and n(φ + q0) =
3n(φ) + q0(v) Set r(φ) = p(φ) − n(φ). then r(φ + q0) = 2r(φ), so that if r(φ) > 0 then
r(φ+ q0) > 0 and if r(φ) < 0 then r(φ+ q0) < 0. It follows, since r(q1) = 2 and r(q0) = −2,
that r(q1 + (m− 1)q0) > 0, and r(mq0) < 0, which proves the lemma. □

Corollary 2.14. If q is a non-degenerate quadratic form, then Arf(q) = 1 if and only if q sends
a majority of elements of V to 1 ∈ Z /2Z . In particular, the Arf-invariant is well-defined.

Since r in the above proof is an invariant, it follows thath q1 + (m− 1)q0 is not equivalent
to mq0. Thus we have reproved a Theorem of Arf:

Theorem 2.15 (C.Arf 1941). Two non-degenerate quadratic forms on a Z /2Z−vector space
V of finite dimension are equivalent if and only if they have the same Arf-invariant.

2.2. The Arf-invariant of a knot.
Knot theory provides a important example of where a ’natural’ quadratic form arises. Let
k ⊂ S3 be a knot in the 3-sphere. Let F be a Seifert surface of genus-g and S its Seifert matrix
in a fixed basis of the group H1(F ;Z). The unimodular skew-symmetric form I = ST − S is
the intersection form of the surface F. The for Q = S + ST is symmetric; it is even and has
odd determinant because Q = I mod 2. Define a quadratic form q : H1(F ;Z /2Z) → Z /2Z
by the formula:

q(x) =
1

2
Q(x, x) mod 2.
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Note that q(x) = S(x, x) mod 2. Its associated bilinear for is I = Q mod 2 since

q(x+ y)− q(x)− q(y) = S(x+ y, x+ y)− S(x, x)− S(y, y)

= S(x, y) + S(y, x)

= (S + ST )(x, y) = Q(x, y)

Lemma 2.16. The Arf-invariant Arf(q) of the quadratic form
1

2
Q(x, x) mod 2 only depends

on the knot k ⊂ S3 and not on the choices in its definition.

We denote the knot invariant Arf(q) as Arf(k) and call it the Arf-invariant of the knot k.

Proof. We only need check that Arf(q) is well-defined up to S−equivalence. Elementary
enlargements and reductions replace Seifert matrices S by

a1 0

S
...

...
a2g 0

b1 · · · b2g c 1
0 · · · 0 0 0


Now by elementary row and column operations, we can make c = 0, and ai + bi = 0 for all
i = 1, · · · , 2g. Then Q′ = S ′ + (S ′)T is of the form

0 0

S + ST ...
...

0 0
0 · · · 0 0 1
0 · · · 0 1 0


so a symplectic basis for Q = S + ST mod 2 can be completed to a symplectic basis for
Q′ = S ′ + (S ′)T mod 2 so that Arf(q) + Arf(q0) = Arf(q) mod 2. □

Theorem 2.17. Let k be a knot. The Arf-invariant of k is related to the Alexander polynomial
by

Arf(k) =
{

0 if ∆k(−1) ≡ ±1 mod 8
1 if ∆k(−1) ≡ ±3 mod 8

Also,

Arf(k) =
1

2
∆′′

k(1) mod2

Theorem 2.18 (Fox-Milnor). If k is a slice knot, then the (Conway-normalized) Alexander
polynomial of k is of the form f(t)f(t−1), where f is a polynomial with integer coefficients.

Corollary 2.19. If k is a slice knot then Arf(k) = 0
6



3. Rokhlin’s Theorem

3.1. Characteristic Surfaces.

Definition 3.1. Given any closed oriented 4−manifold M the intersection form QM is the
pairing

QM : H2(M ;Z)×H2(M ;Z) → Z
([A], [B]) 7→ A ·B

Similarly, we can define QM([A], [B]) to be equal to ⟨PD−1
X (A), B⟩ or

QM([A], [B]) = ([A]⌣ [B])[M ]. Since the cup product is symmetric and bilinear so is QM .

We will take M to be simply-connected unless stated otherwise.

Definition 3.2. A closed oriented surface F smoothly embedded in M is called characteristic
if

F · x = x · x mod 2 for all x ∈ H2(M ;Z).

Let e1, · · · , en be a basis in H2(M) then QM is given by a matrix aij = ei · ej. As a
consequence a surface F =

∑
εiei is characteristic if and only if

n∑
j=1

aijεj = aii mod 2 for all i = 1, · · · , n

With each characteristic surface F ⊂M, one can associate a quadratic form

q̃ : H1(F ;Z /2Z) → Z /2Z,
and the Arf(M,F ) = Arf(q̃).

Now we give the punch line of this section:

Theorem 3.3 (Rokhlin’s Theorem). Let M be a simply-connected oriented closed smooth
4−manifold, and F a closed oriented surface smoothly embedded in M. If F is characteristic
then

1

8
(σ(M)− F · F ) = Arf(M,F ) mod 2.

Corollary 3.4 (Kervaire-Milnor). If F in Theorem is a 2-sphere, H1(F ;Z /2Z) vanishes and
Arf(M,F ) = 0.

The following corollary is obtained from taking F to be empty.

Corollary 3.5 (Rokhlin). If M is a spin 4−manifold then σ(M) ≡ 0 mod 16

3.2. The definition of q̃.
Let F be a closed oriented characteristic surface smoothly embedded in M. Suppose that
a homology classes γ ∈ H1(F ;Z /2Z) is realized by an embedded circle γ ⊂ F. Since
H1(M ;Z) = 0, γ bounds a connected orientable surface D embedded in M such that int(D)
is transversal to F. We may deform D slightly to anew surface D′ so that γ′ = ∂D′ is a curve
in F obtained by shifting ∂D inside F so that ∂D ∩ ∂D′ = ∅. One may assume that D and
D′ intersect transversely. We define

q̃(γ) = D ·D′ +D · F mod 2
7



where by D ·D′ and D · F we mean the intersection numbers of int(D) with int(D′) and F,
respectively.

Lemma 3.6.
q̃(γ) = D ·D′ +D · F mod 2

gives a well-defined quadratic form

q̃ : H1(F ;Z /2Z) → Z /2Z
whose associated bilinear form is the mod 2 intersection form of the surface F

Example 3.7. Suppose that a 3-sphere Σ embedded in M and separates the surface F into
two pieces, F = F ′ ∪ D2, where F ′ ⊂ Σ is a Sefert surface of a knot k ∈ Σ. Then we have
two quadratic forms,

q : H1(F
′;Z /2Z) → Z /2Z, the quadratic form of a surface F(1)

q̃ : H1(F ;Z /2Z) → Z /2Z, defined above.(2)

Claim 3.8. The inclusion induced isomorphism φ : H1(F
′;Z /2Z) → H1(F ;Z /2Z) makes

the following diagram commute:

H1(F
′;Z /2Z) Z /2Z

H1(F ;Z /2Z) Z /2Z

q

φ id

q̃

Proof of claim. Let γ ⊂ F ′ be an embedded circle in F ′. Choose an orientable embedded
surface D with ∂D = γ such that D ∩D2 = ∅ (simply take D equal to a Seifert surface of
γ inside Σ and push off D2.) Then D · F = D · F ′ = lk(γ, k) mod 2. Let N(γ) be a tubular
neighborhood of γ in Σ. Since F ′ is a Seifert surface of the knot k, the intersection ∂N(γ)∩F ′

is homologous to k via the surface F ′ \ int(N(γ)∩F ′). This implies that [k] = [∂N(γ)∩F ′] ∈
H1(Σ \ int(N(γ));Z) = Z . Therefore, D ·F = lk(γ, k) = lk(γ, ∂N(γ)∩F ′) = 0 mod 2. Thus
q̃(γ) = D ·D′ = lk(γ, γ′) = lk(γ, γ+) = q(γ) mod 2 where γ+ is a (positive) push-off of γ. □

Proof of Lemma. We first check that the number q̃(γ) mod 2 is independent of the choice of
D. Let D1 and D2 be a two choice for D, and let S = D1 ∪γ D2 and for simplicity we will
assume S is smoothly embedded. Let S ′ = D′

1∪D′
2, then S·S = S·S ′ = D1·D′

1+D2·D′
2 mod 2.

Since F is characteristic, S ·S = S ·F mod 2, so we get D1 ·D′
1+D2 ·D′

2 = D1 ·F+D2 ·F mod 2
and D1 ·D′

1 +D1 ·F = D2 ·D′
2 +D2 ·F mod 2. Thus q̃(γ) is independent of the choice of D.

Since any two homotopic closed simple curve on F are isotopic, q̃(γ) only depends on the
homotopy class of γ, and hence defines a map q̃ : π1(F ) → Z /2Z .
Let γ1 ∗ γ2 denote a product of loops γ1 and γ2, then we claim that

q̃(γ1 ∗ γ2) = q̃(γ1) + q̃(γ2) + γ1 · γ2 mod 2,

where γ1 · γ2 is the intersection modulo 2 of the homology classes represented by γ1 and γ2.
Since γ1 · γ2 = γ2 · γ2 mod 2, the formula above implies that q̃(γ1 ∗ γ2) = q̃(γ2 ∗ γ1) and that
the map q̃ : π1(F ) → Z /2Z factors through H1(F ;Z) and H1(F ;Z /2Z).
Thus, to compelete the proof we just need to check the formula q̃(γ1 ∗ γ2). For simplicity, let
the curves γ1 and γ2 intersect transversely at one point, and letD1 andD2 be the surfaces that
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the curves bound as in the definition of q̃. Let γ be a smooth connectd sum loop representing
γ1 ∗ γ2. We get a bounding surface D for γ from D1∪D2 and the curved triangles T1 and T2.
Push γ off in the direction of a normal field of γ extending the normal fields on γ1 and γ2.
Then γ and its push-off will link, which indicates that D ·D′ = D1 ·D′

1+D2 ·D′
2+1 mod 2 □

Lemma 3.9. Arf(M,F ) only depends on homology class [F ] ∈ H2(M ;Z /2Z).

This upcoming proof of Rokhlin’s Theorem was originally given by Andrew Casson a
former University of Texas Professor.

Proof of Rokhlin’s Theorem. Let us consider the manifold M#CP2#CP2
. Its intersection

form is odd and indefinite, hence isomorphic to the form p·(+1)⊕q ·(−1) with p = b+(M)+1

and q = b−(M)+ 1. By Wall’s theorem, there exists a k ≥ 0 such that (M#CP2#CP2
)#k ·

(S2 × S2) is diffeomorphic to (p · CP2#q · CP2
)#k · (S2 × S2). Since

(S2 × S2)#CP2 = CP2
#2 · CP2, (S2 × S2)#CP2

= CP2#2 · CP2
,

We have that for some l1 and l2,

M#l1 · CP2#l2 · CP
2
= a · CP2#b · CP2

,

where a = l1 + b+(M) and b = l2 + b−(M). Let η ∈ H2(CP2) = Z and η̃ ∈ H2(CP
2
) = Z

be the generators represented by the embedded 2-spheres CP1 ⊂ CP2 . Then η · η = 1 and
η · η = −1. If a class F is characteristic in H2(M) then the class Fc = F + l1 · η + l2 · η
is characteristic in M#l1 · CP2#l2 · CP

2
. The property of being characteristic is preserved

under diffeomorphism, therefore, the image of Fc in a · CP2#b · CP2 is characteristic. Both
the Arf-invariant and signature are additive with respect to conenected sums of manifolds
and characteristic surfaces. Therefore, if the Rokhlin equality holds true for any of the fol-
lowing 3 pairs (M1, F1), (M2, F2), and (M1#M2, F1 ∪ F2), it is true for the third one. We
note that, σ(CP2)−η ·η = 0 = Arf(CP2, η) and σ(CP2

)−η ·η = 0 = Arf(CP2
, η). Moreover,

both the Arf-invariant and signature both change signs if the orientation changes. Therefore,
Rokhlin’s theorem need only be checked for characteristic surfaces in CP2 .

If η ∈ H2(CP2) = Z is a generator represented by the embedded 2-sphere CP1, then a
class s · η ∈ H2(CP2) is characteristic if and only if and only if s is odd. The complex curve

C = {[x0 : x1 : x2] : x0xs−1
1 + xs2} ⊂ CP2

is homeomorphic to S2 and represents the class s · η see below. It is smoothly embedded in
CP2 expect possibly at the point [1 : 0 : 0]. Let B be the D4 of the radius ε > 0 centered
at [1 : 0 : 0]. In the affine plane x0 = 1 the intersection ∂B ∩ C is given by the equations
x0x

s−1
1 + xs2, |x1|2 + |x2|2 = ε2. Therefore, ∂B ∩ C ⊂ ∂B = S3 is the (s, s − 1)−torus knot

ks,s−1. Let S be a Seifert surface in ∂B with the boundary curve ∂B ∩ C, then the surface
F = (C \(C∩ intB))∪S represents the class s ·η. An easy calculation using the identification
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of the quadratic form q and q̃ in the example above shows that
Arf(CP2, s · η) = Arf(ks,s−1),

= (s2 − 1)((s− 1)2 − 1)/24 mod 2

= (1− s2)/8 mod 2,

=
1

8
(σ(CP2)− sη · sη) mod 2.

□

We introduce a lemma that was used in the previous proof:

Lemma 3.10. The complex curve C in CP2 given by the equation x0x
s−1
1 + xs = 0 is homeo-

morphic to S2 and represents the homology class s · [CP1] ∈ H2(CP2).

3.3. Representing homology classes by surfaces. Let M be a simply-connected oriented
closed smooth 4−manifold. It is known that every homology class of H2(M) can be rep-
resented by a smoothly embedded surface F. The following is one of the most intriguing
problem in 4-dimensional topology: given a class [u] ∈ H2(M, ) what is the minimal genus
of F ⊂ M representing u? The class u is said to be spherical if it can be represented by an
embedded 2-sphere. Next we show a quick application of Rokhlin’s Theorem to obstruct a
homology class in CP2 from being a 2-sphere.

Example 3.11. Note that H2(CP2) = Z, so let η ∈ H2(CP2) be the generator of the infinite
cyclic group. We know that η can be represented by [CP1] ⊂ CP2 which is a 2-sphere. We will
use Rokhlin’s Theorem to show that the homology class 3η ∈ H2(CP2) is aspherical.Suppose
that 3η is sphreical for sake of contradiction. By Kervaire-Milnor we know that if 3η is
sphereical the it must have Arf-invariant equal to 0. We now calculate the Arf(CP2, 3η),

1

8
(σ(CP2)− (3η · 3η)) = 1

8
(1− 9) =

−8

8
= −1 ≡ 1 mod 2 ̸= Arf(CP2, 3η) = 0

Therefore, we see that the class 3η is aspherical.

3.4. The Rokhlin invariant. Let Σ be an oriented integral homology 3-sphere. Then there
exists a smoothly simply-connected 4-manifold W with even intersection form such that
∂W = Σ. Then the signature of W is divisible by 8, and

µ(Σ) =
1

8
σ(W ) mod 2

is independent of choice of W. We call µ(Σ) the Rokhlin invariant of Σ. Suppose that M is
a smooth simply-connected oriented 4−manifold with ∂M = Σ; we do not even assume a
intersection form. Suppose that M has a spherical characteristic surface then,

µ(Σ)− 1

8
(σ(M)− F · F ) mod 2.

Now to check the formula, form a smooth closed manifold X = M ∪Σ (−W ). Then F is
spherical characteristic surface in X, and

1

8
(σ(M)− F · F )− µ(Σ) =

1

8
(σ(M)− F · F )− 1

8
σ(W )

=
1

8
(σ(X)− F · F ) = 0 mod 2.
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Example 3.12. As as concrete exaple, 1-surgery on the trefoil K = 31, denoted S3
1(K), has

Rokhlin invariant µ(S3
1(K)) = 1 because S3

1(31) is known to bound the simply-connected
smooth spin 4-manifold obtained from D4 by attaching eight 2−handles along a framed link
with linking matrix −E8.

4. Current Research involving Arf-Invariant, and Rokhlin’s Theorem

Knot invariants from branched covers of 4-manifolds” Alexandra Kjuchukova discussed
two knot k ⊂ S3 invariants defined in terms of branched covers of 4-manifolds. The first is
the Ξp invariant, which comes from irregular p-fold covers of B4. The second one, j, is a new
concordance invariant of framed knots in 3-manifolds. As applications, I will illustrate how
to use Ξp to obstruct ribbonness for twist knots; and I will relate Ξp and j to other classical
invariants. Some of this work is joint with Julius Shaneson.
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