THE ARF AND ROHKLIN'S INVARIANT

AUDRICK PYRONNEAU

ABSTRACT. These are notes to be presented at a summer mini-course at UT-Austin. These notes are not original, all mistakes are to be attributed to the author, and all credit goes to the texts: An introduction to Knot Theory by W.B. Raymond Lickorish, Lectures on the Topology of 3-Manifolds by Nikolai Saveliev, Notes by Anthony Conway, and Alexandra Kjuchukova.

CONTENTS

1. Review of Seifert Matrices	1
1.1. Presentation Matrices	1
1.2. Construction Modulo Proofs	2
2. Arf Invariant	3
2.1. The Arf-invariat of a quadratic form	3
2.2. The Arf-invariant of a knot	5
3. Rokhlin's Theorem	7
3.1. Characteristic Surfaces	7
3.2. The definition of \tilde{q}	7
3.3. Representing homology classes by surfaces	10
3.4. The Rokhlin invariant	10
4. Current Research involving Arf-Invariant, and Rokhlin's Theorem	11

These course notes' main objective is to introduce a classical invariant of quadratic forms on Z/2-vector space, and its many applications. We will assume familiarity with 4-manifolds, and knot theory, but these notes should be largely self-contained. We will start with a short review of Seifert Forms, Seifert Matrices, and S-equivalence. Then we will introduce quadratic forms over Z/2 and provide a complete invariant of these quadratic forms (The Arf-invariant). Next, we will see how we can use quadratic refinements of Seifert Matrices to give us an Arf-Invariant for knots. Furthermore, we will connect the Arf-Invariant to 4-dimensional topology first by proving the Arf-invariant obstructs knots being slice , then using the Arf-Invariant to prove a famous restriction of the signature of Spin 4-manifolds (Rokhlin's Theorem). Lastly, we will provide an invariant for Integer Homology 3-spheres, and highlight recent research using the Arf-invariant.

1. Review of Seifert Matrices

1.1. Presentation Matrices.

Date: January 2024.

Definition 1.1. Let M is a module over a commutative ring R. M is 2 free if any element in M can be uniquely expressed as a linear sum of elements in a base. A finite presentation for M is an exact sequence

$$F \xrightarrow{\alpha} E \xrightarrow{\phi} M \to 0$$

where E and F are free R-modules with finite bases. If α is represented by matrix A with respect to bases e_1, \dots, e_m and f_1, \dots, f_n of E and F, then the matrix A, of m rows and ncolumns, is a presentation matrix for M. Since ϕ is a surjection, the images of (e_m) can be thought of as generators for M, and the images of f_n as relations amongst those generators.

Theorem 1.2. Any two presentation matrices A_0 and A_1 for M differ by a sequence of matrix moves of the following forms and their inverses:

- *i* Perutation of rows or columns;
- ii Replacement of the matrix A_0 by $A_1 \begin{vmatrix} A & 0 \\ 0 & 1 \end{vmatrix}$;
- iii Addition of an extra column of zeros to the matrix A_0 ;
- iv Addition of a scalar multiple of a row (or column) to another row (or column).

1.2. Construction Modulo Proofs.

Proposition 1.3. Suppose that F is a connected, compact, orientable surface with non-empty boundary, locally flat in S^3 . Then the homology groups $H_1(S^3 - F; \mathbb{Z})$ and $H_1(F; \mathbb{Z})$ are isomorphic, and there is a unique non-singular bilinear form

$$\beta: H_1(S^3 - F; \mathbb{Z}) \times H_1(F; \mathbb{Z}) \to \mathbb{Z}$$

with the property that $\beta([c], [d]) = lk(c, d)$ for any oriented simple closed curves c and d in $S^3 - F$ and F respectively.

Proof outline. The isomorphism between $H_1(S^3 - F; \mathbb{Z})$ and $H_1(F; \mathbb{Z})$ given by Alexander Duality and Poincare Duality. For a given surface in S^3 , F one can show $H_1(F; \mathbb{Z})$ is isomorphic to $\bigoplus_{2g+n-1} \mathbb{Z}$ and we can realize the generators of this group as a set of simple closed curves on F, $\{[f_i]\}$. Now consider a regular neighborhood of F called V. $F \hookrightarrow V$ is a homotopy equivalence and $\partial V = F \sqcup -F$. The inclusion of $\partial V \hookrightarrow V$ will induce a map on homology mapping one set of generators F to F and -F to zero. Furthermore, the orientations of $[e_i]$ half the generators of $H_1(\partial V; \mathbb{Z})$ can be chosen so that $lk(e_i, f_j) = \delta_{ij}$. Lastly we note that by a Mayer-Vietoris argument $H_1(S^3 - F) \cong H_1(S^3 - V)$ hence generated by the curves $\{[e_i]\}$

Now define

$$\beta: H_1(S^3 - F; \mathbb{Z}) \times H_1(F; \mathbb{Z}) \to \mathbb{Z}$$

by $\beta([e_i], [f_j]) = \delta_{ij}$. Now suppose $[c] \in S^3 - F, [d] \in F$ are any oriented simple closed curves. You can represent both as linear combinations of generating elements and then note $lk(c, f_j) = [c] = \lambda_i e_i = \lambda_i$. Consider this similarly for [d], and we arrive at $\beta([c], [d]) = lk(c, d)$.

Definition 1.4. Associated to the Seifert surface F for an oriented link L is the Seifert form

$$\alpha: H_1(F; \mathbb{Z}) \times H_1(F; \mathbb{Z}) \to \mathbb{Z}$$

defined by $\alpha(x, y) = \beta((i^-)_* x, y)$. i^{\pm} is defined as the image of $F \subset S^3 - (F \times [-1, 1])$ under the inclusion map. The positive and negative signs are to specify if F is included to the top or bottom of $F \times [-1, 1]$, where $S^3 - (F \times [-1, 1]) \simeq S^3 - F$. Taking a basis $\{[f_i]\}$ for $H_1(F;\mathbb{Z})$ with a dual β basis $\{[e_i]\}$ for $H_1(S^3 - F;\mathbb{Z})$ as before, α is represented by the Seifert matrix A, where

$$A_{ij} = \alpha([f_i], [f_j]) = lk(f_i^-, f_j) = lk(f_i, f_j^+)$$

An immediate consequence is that $H_1(S^3 - F; \mathbb{Z})$, $[f_i^-] = \sum_i A_{ij}[e_i]$, and $[f_j^+] = \sum_j A_{ij}[e_j]$.

Theorem 1.5. Suppose that F_1 and F_2 are Seifert surfaces for an oriented link L in S^3 . Then there exists a sequence of Seifert surfaces $\Sigma_1, \Sigma_2, \dots, \Sigma_N$, with $\Sigma_1 = F_1$, $\Sigma_N = F_2$, such that for each i, either Σ_i is obtained from Σ_{i-1} or Σ_{i-1} is obtained from Σ_i by surgery along an arc embedded in S^3 , or related by isotopy.

Proof. Lickorish Chapter 8

Definition 1.6. Let A be a square matrix over \mathbb{Z} . An elementary enlargment of A is a matrix B of the form

$$B = \begin{bmatrix} A & \xi & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \text{ or } \begin{bmatrix} A & 0 & 0 \\ \eta^{\tau} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

for some column ξ or row η^{τ} . The matrix A is called the elementary reduction of B.

Definition 1.7. Let A and B be square matrices. A is unimodular congruent to B if there exists a square matrix P such that $B = P^{\tau}AP$, where $detP = \pm 1$.

Definition 1.8. Square matricies A and B over \mathbb{Z} are called S-equivalent if they are related by a sequence of elementary enlargements, elementary reductions and unimodular congruences.

Theorem 1.9. Let A and B be Seifert matrices for an oriented link L. Then A and B are S-equivalent.

2. Arf Invariant

2.1. The Arf-invariat of a quadratic form. Let V be a finite dimensional vector space over $\mathbb{Z}/2\mathbb{Z}$.

Definition 2.1. A function $q: V \to \mathbb{Z}/2\mathbb{Z}$ is called a quadratic form if there exists a associated bilinear form I(x, y) = q(x + y) - q(x) - q(y) over $\mathbb{Z}/2\mathbb{Z}$.

Remark 2.2. Note that I is symmetric in that I(x, y) = I(y, x), and alternating I(x, x) = q(2x) - 2q(x) = 0, and q(0) = 0.

Definition 2.3. A quadratic form q is called non-degenerate if its bilinear form I is non-degenerate.

Definition 2.4. Let $\langle -, - \rangle : V \otimes V \to k$ be a bilinear form (k in general is a ring, but is typically taken to be a field). A quadratic function $q: V \to k$ is called a **quadratic refinement** of $\langle -, - \rangle$ if

$$\langle -, - \rangle = q(v+w) - q(v) - q(w) + q(0)$$

for all $v, w \in V$. If such a q is indeed a *quadratic form* in that $q(tv) = t^2q(v)$ then q(0) = 0and $\langle v, v \rangle = 2q(v)$. This means that a quadratic refinement by a quadratic form always exists when $2 \in k$ is invertible.

We will later see that one way to express quadratic refinements is by characteristic elements of a bilinear form. Now let us move over to an example:

Example 2.5. Let $U = (\mathbb{Z}/2\mathbb{Z})^2$ have a basis a, b. There is only one non-degenerate symmetric bilinear form I on U given by I(a, a) = I(b, b) = 0 and I(a, b) = 1. Define the quadratic forms $q_0, q_1 : U \to \mathbb{Z}/2\mathbb{Z}$ by the formulas $q_0(a) = q_0(b) = 0$, $q_0(a + b) = 1$, $q_1(a) = q_1(b) = q_1(a+b) = 1$. The associated bilinear forms of both q_0 and q_1 equal the form I. However, the quadratic forms q_0 and q_1 are not equivalent since the form q_0 sends a majority of vectors of U to 0 while q_1 sends a majority of vectors of U to 1.

Claim 2.6. It turns out that any other any other non-degenerate quadratic form q on U is equivalent to either q_1 or q_0 .

Proof of claim. Consider the form q with q(a) = 0 and q(b) = 1. We preform a change of basis to a' = a, b' = a + b to get q(a') = 0 and q(b') = q(a + b) = I(a, b) + q(a) + q(b) = 0. Thus q is equivalent to q_0 .

Definition 2.7. A bilinear form is symplectic if it is bilinear, alternating, and non-degenerate. A given basis $\mathbf{e}_i, \mathbf{f}_i$ for a bilinear form ω is called a symplectic basis if $\omega(\mathbf{e}_i, \mathbf{e}_j) = 0 = \omega(\mathbf{f}_i, \mathbf{f}_j), \ \omega(\mathbf{e}_i, \mathbf{f}_j) = \delta_{ij}$.

Lemma 2.8. For any non-degenerate quadratic form $q: V \to \mathbb{Z}/2\mathbb{Z}$, there exists a symplectic basis. In particular, dim V is even.

Proof. Choose a basis in V, then the form I(-,-) is given by a matrix I with detI = 1, and $I(x,y) = x \cdot Iy$. If $x \neq 0$ there exists u such that $x \cdot u = 1$, and hence I(x,y) = 1 for $y = I^{-1}u$. The vectors x and y are linearly independent because I(x,y) = 1; in particular, $dimV \geq 2$.

Choose a new basis in V with the first two vectors x and y. The matrix I in this new basis takes the form

$$\begin{bmatrix} H & * \\ * & I_0 \end{bmatrix} \text{ where } H = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

By elementary transformation it can be turned into $\begin{bmatrix} H & * \\ * & I_1 \end{bmatrix}$, and induction completes the proof.

Definition 2.9. Let $q: V \to \mathbb{Z}/2\mathbb{Z}$ be a non-degenerate quadratic form, and $a_i, b_i, i = 1, \dots, n$, a symplectic basis in V. Define the **Arf-invariant** of q by the formula

$$\operatorname{Arf}(q) = \sum_{i=1}^{n} q(a_i)q(b_i) \in \mathbb{Z}/2\mathbb{Z}$$

Now we need show that $\operatorname{Arf}(q)$ is independent of the choice of a symplectic basis. This will follow from the upcoming study of the non-degenerate quadratic forms over $\mathbb{Z}/2\mathbb{Z}$.

Example 2.10. The forms $q_0, q_1 : U \to \mathbb{Z}/2\mathbb{Z}$ from the example above have Arf-invariants $\operatorname{Arf}(q_0) = 0$ and $\operatorname{Arf}(q_1) = 1$. Thus, the Arf-invariant provides a complete classification of non-degenerate quadratic forms on U. We will prove that the Arf-invariant completely classifies quadratic forms in general.

Lemma 2.11. On $U \oplus U$, the forms $q_0 + q_0$ and $q_1 + q_1$ are equivalent.

Proof. Note that $q_0 + q_0$ and $q_1 + q_1$ have the same associated bilinear form on $U \oplus U$. Let $a_j, b_j, j = 1, 2$, be a basis for $U \oplus U$ so that a_j, b_j form a symplectic basis on the j^{th} copy of U. If $\psi_i = q_i + q_i$ for i = 0, 1, then $\psi_0(a_j) = \psi_0(b_j) = 0$ and $\psi_1(a_j) = \psi_1(b_j) = 1, j = 1, 2$. Choose a new basis for $U \oplus U$,

$$a'_1 = a_1 + a_2, \ b'_1 = b_1 + a_2, \ a'_2 = a_2 + b_2 + a_1 + b_1, \ b'_2 = b_2 + a_1 + b_1.$$

This defines a symplectic basis and $\psi_1(a'_j) = \psi_0(a_j)$ and $\psi_1(b'_j) = \psi_0(b_j)$, j = 1, 2 so that ψ_1 is equivalent to ψ_0 .

Lemma 2.12. Let $q: V \to \mathbb{Z}/2\mathbb{Z}$ be a non degenerate quadratic form where dimV = 2m. Then q is equivalent to $q_1 + (m-1)q_0$ if, with respect to some basis, Arf(q) = 1. Then form q is equivalent to mq_0 if Arf(q) = 0.

Proof. If $a_i, b_i, i = 1, \dots, m$, is a symplectic basis for V and if V_i is the subspace spanned by a_i, b_i , let ψ_i denote the restriction of q onto V_i . it is obvious that $q = \sum \psi_i$, where each ψ_i is equivalent to either q_0 or q_1 . By the previous lemma, $2q_0 = 2q_1$, so q is equivalent to either mq_0 or $q_1 + (m-1)q_0$, but $\operatorname{Arf}(mq_0) = 0$, and $\operatorname{Arf}(q_1 + (m-1)q_0)$, which implies the result.

To complete the study of non-degenerate quadratic forms over $\mathbb{Z}/2\mathbb{Z}$, it remains to show that $\varphi_1 = q_1 + (m-1)q_0$ and $\varphi_0 = mq_0$ are not equivalent. To show this we prove the following lemma:

Lemma 2.13. The quadratic form φ_1 sends a majority of elements of V to $1 \in \mathbb{Z}/2\mathbb{Z}$, while φ_0 sends a majority of elements to $0 \in \mathbb{Z}/2\mathbb{Z}$.

Proof. Proof by induction: (Case m=1), is trivial. Given a non-degenerate quadratic form φ on V, let $p(\varphi) = \#$ of v such that $\varphi(v) = 1$, similarly let $n(\varphi) = \#$ of v such that $\varphi(v) = 0$. Since, dim(V) = 2n and can be given a symplectic basis we can conclude $n(\varphi) + p(\varphi) = 2^{2m}$. The functions p and n satisfy the the identities $p(\varphi + q_0) = 3p(\varphi) + q_0(v)$ and $n(\varphi + q_0) = 3n(\varphi) + q_0(v)$ Set $r(\varphi) = p(\varphi) - n(\varphi)$. then $r(\varphi + q_0) = 2r(\varphi)$, so that if $r(\varphi) > 0$ then $r(\varphi + q_0) < 0$. It follows, since $r(q_1) = 2$ and $r(q_0) = -2$, that $r(q_1 + (m-1)q_0) > 0$, and $r(mq_0) < 0$, which proves the lemma.

Corollary 2.14. If q is a non-degenerate quadratic form, then Arf(q) = 1 if and only if q sends a majority of elements of V to $1 \in \mathbb{Z}/2\mathbb{Z}$. In particular, the Arf-invariant is well-defined.

Since r in the above proof is an invariant, it follows that $q_1 + (m-1)q_0$ is not equivalent to mq_0 . Thus we have reproved a Theorem of Arf:

Theorem 2.15 (C.Arf 1941). Two non-degenerate quadratic forms on a $\mathbb{Z}/2\mathbb{Z}$ -vector space V of finite dimension are equivalent if and only if they have the same Arf-invariant.

2.2. The Arf-invariant of a knot.

Knot theory provides a important example of where a 'natural' quadratic form arises. Let $k \subset S^3$ be a knot in the 3-sphere. Let F be a Seifert surface of genus-g and S its Seifert matrix in a fixed basis of the group $H_1(F;\mathbb{Z})$. The unimodular skew-symmetric form $I = S^T - S$ is the intersection form of the surface F. The for $Q = S + S^T$ is symmetric; it is even and has odd determinant because $Q = I \mod 2$. Define a quadratic form $q : H_1(F;\mathbb{Z}/2\mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z}$ by the formula:

$$q(x) = \frac{1}{2}Q(x, x) \mod 2.$$

Note that $q(x) = S(x, x) \mod 2$. Its associated bilinear for is $I = Q \mod 2$ since

$$q(x + y) - q(x) - q(y) = S(x + y, x + y) - S(x, x) - S(y, y)$$

= S(x, y) + S(y, x)
= (S + S^T)(x, y) = Q(x, y)

Lemma 2.16. The Arf-invariant Arf(q) of the quadratic form $\frac{1}{2}Q(x,x) \mod 2$ only depends on the knot $k \subset S^3$ and not on the choices in its definition.

We denote the knot invariant $\operatorname{Arf}(q)$ as $\operatorname{Arf}(k)$ and call it the Arf-invariant of the knot k.

Proof. We only need check that Arf(q) is well-defined up to S-equivalence. Elementary enlargements and reductions replace Seifert matrices S by

$$\begin{bmatrix} & & a_1 & 0 \\ S & \vdots & \vdots \\ & & a_{2g} & 0 \\ b_1 & \cdots & b_{2g} & c & 1 \\ 0 & \cdots & 0 & 0 & 0 \end{bmatrix}$$

Now by elementary row and column operations, we can make c = 0, and $a_i + b_i = 0$ for all $i = 1, \dots, 2_g$. Then $Q' = S' + (S')^T$ is of the form

Γ			0	0
	$S + S^T$		÷	:
			0	0
0		0	0	1
0		0	1	0

so a symplectic basis for $Q = S + S^T \mod 2$ can be completed to a symplectic basis for $Q' = S' + (S')^T \mod 2$ so that $\operatorname{Arf}(q) + \operatorname{Arf}(q_0) = \operatorname{Arf}(q) \mod 2$.

Theorem 2.17. Let k be a knot. The Arf-invariant of k is related to the Alexander polynomial by

$$Arf(k) = \begin{cases} 0 & if \quad \Delta_k(-1) \equiv \pm 1 \mod 8\\ 1 & if \quad \Delta_k(-1) \equiv \pm 3 \mod 8 \end{cases}$$

Also,

$$Arf(k) = \frac{1}{2}\Delta_k''(1) \ mod2$$

Theorem 2.18 (Fox-Milnor). If k is a slice knot, then the (Conway-normalized) Alexander polynomial of k is of the form $f(t)f(t^{-1})$, where f is a polynomial with integer coefficients.

Corollary 2.19. If k is a slice knot then Arf(k) = 0

3. Rokhlin's Theorem

3.1. Characteristic Surfaces.

Definition 3.1. Given any closed oriented 4-manifold M the intersection form Q_M is the pairing

$$Q_M : H_2(M; \mathbb{Z}) \times H_2(M; \mathbb{Z}) \to \mathbb{Z}$$
$$([A], [B]) \mapsto A \cdot B$$

Similarly, we can define $Q_M([A], [B])$ to be equal to $\langle PD_X^{-1}(A), B \rangle$ or $Q_M([A], [B]) = ([A] \smile [B])[M]$. Since the cup product is symmetric and bilinear so is Q_M .

We will take M to be simply-connected unless stated otherwise.

Definition 3.2. A closed oriented surface F smoothly embedded in M is called characteristic if

$$F \cdot x = x \cdot x \mod 2$$
 for all $x \in H_2(M; \mathbb{Z})$.

Let e_1, \dots, e_n be a basis in $H_2(M)$ then Q_M is given by a matrix $a_{ij} = e_i \cdot e_j$. As a consequence a surface $F = \sum \varepsilon_i e_i$ is characteristic if and only if

$$\sum_{j=1}^{n} a_{ij}\varepsilon_j = a_{ii} \mod 2 \text{ for all } i = 1, \cdots, n$$

With each characteristic surface $F \subset M$, one can associate a quadratic form

$$\widetilde{q}: H_1(F; \mathbb{Z}/2\mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z},$$

and the $\operatorname{Arf}(M, F) = \operatorname{Arf}(\widetilde{q}).$

Now we give the punch line of this section:

Theorem 3.3 (Rokhlin's Theorem). Let M be a simply-connected oriented closed smooth 4-manifold, and F a closed oriented surface smoothly embedded in M. If F is characteristic then

$$\frac{1}{8}(\sigma(M) - F \cdot F) = Arf(M, F) \mod 2.$$

Corollary 3.4 (Kervaire-Milnor). If F in Theorem is a 2-sphere, $H_1(F; \mathbb{Z}/2\mathbb{Z})$ vanishes and Arf(M, F) = 0.

The following corollary is obtained from taking F to be empty.

Corollary 3.5 (Rokhlin). If M is a spin 4-manifold then $\sigma(M) \equiv 0 \mod 16$

3.2. The definition of \tilde{q} .

Let F be a closed oriented characteristic surface smoothly embedded in M. Suppose that a homology classes $\gamma \in H_1(F; \mathbb{Z}/2\mathbb{Z})$ is realized by an embedded circle $\gamma \subset F$. Since $H_1(M; \mathbb{Z}) = 0$, γ bounds a connected orientable surface D embedded in M such that int(D)is transversal to F. We may deform D slightly to anew surface D' so that $\gamma' = \partial D'$ is a curve in F obtained by shifting ∂D inside F so that $\partial D \cap \partial D' = \emptyset$. One may assume that D and D' intersect transversely. We define

$$\widetilde{q}(\gamma) = D \cdot D' + D \cdot F \mod 2$$

where by $D \cdot D'$ and $D \cdot F$ we mean the intersection numbers of int(D) with int(D') and F, respectively.

Lemma 3.6.

$$\widetilde{q}(\gamma) = D \cdot D' + D \cdot F \mod 2$$

gives a well-defined quadratic form

$$\widetilde{q}: H_1(F; \mathbb{Z}/2\mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z}$$

whose associated bilinear form is the mod 2 intersection form of the surface F

Example 3.7. Suppose that a 3-sphere Σ embedded in M and separates the surface F into two pieces, $F = F' \cup \mathbb{D}^2$, where $F' \subset \Sigma$ is a Sefert surface of a knot $k \in \Sigma$. Then we have two quadratic forms,

- (1) $q: H_1(F'; \mathbb{Z}/2\mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z}$, the quadratic form of a surface F
- (2) $\widetilde{q}: H_1(F; \mathbb{Z}/2\mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z},$ defined above.

Claim 3.8. The inclusion induced isomorphism $\varphi : H_1(F'; \mathbb{Z}/2\mathbb{Z}) \to H_1(F; \mathbb{Z}/2\mathbb{Z})$ makes the following diagram commute:

Proof of claim. Let $\gamma \subset F'$ be an embedded circle in F'. Choose an orientable embedded surface D with $\partial D = \gamma$ such that $D \cap D^2 = \emptyset$ (simply take D equal to a Seifert surface of γ inside Σ and push off D^2 .) Then $D \cdot F = D \cdot F' = lk(\gamma, k) \mod 2$. Let $N(\gamma)$ be a tubular neighborhood of γ in Σ . Since F' is a Seifert surface of the knot k, the intersection $\partial N(\gamma) \cap F'$ is homologous to k via the surface $F' \setminus int(N(\gamma) \cap F')$. This implies that $[k] = [\partial N(\gamma) \cap F'] \in$ $H_1(\Sigma \setminus int(N(\gamma)); \mathbb{Z}) = \mathbb{Z}$. Therefore, $D \cdot F = lk(\gamma, k) = lk(\gamma, \partial N(\gamma) \cap F') = 0 \mod 2$. Thus $\tilde{q}(\gamma) = D \cdot D' = lk(\gamma, \gamma') = lk(\gamma, \gamma^+) = q(\gamma) \mod 2$ where γ^+ is a (positive) push-off of γ . \Box

Proof of Lemma. We first check that the number $\tilde{q}(\gamma) \mod 2$ is independent of the choice of D. Let D_1 and D_2 be a two choice for D, and let $S = D_1 \cup_{\gamma} D_2$ and for simplicity we will assume S is smoothly embedded. Let $S' = D'_1 \cup D'_2$, then $S \cdot S = S \cdot S' = D_1 \cdot D'_1 + D_2 \cdot D'_2 \mod 2$. Since F is characteristic, $S \cdot S = S \cdot F \mod 2$, so we get $D_1 \cdot D'_1 + D_2 \cdot D'_2 = D_1 \cdot F + D_2 \cdot F \mod 2$ and $D_1 \cdot D'_1 + D_1 \cdot F = D_2 \cdot D'_2 + D_2 \cdot F \mod 2$. Thus $\tilde{q}(\gamma)$ is independent of the choice of D. Since any two homotopic closed simple curve on F are isotopic, $\tilde{q}(\gamma)$ only depends on the homotopy class of γ , and hence defines a map $\tilde{q} : \pi_1(F) \to \mathbb{Z}/2\mathbb{Z}$.

Let $\gamma_1 * \gamma_2$ denote a product of loops γ_1 and γ_2 , then we claim that

$$\widetilde{q}(\gamma_1 * \gamma_2) = \widetilde{q}(\gamma_1) + \widetilde{q}(\gamma_2) + \gamma_1 \cdot \gamma_2 \mod 2$$

where $\gamma_1 \cdot \gamma_2$ is the intersection modulo 2 of the homology classes represented by γ_1 and γ_2 . Since $\gamma_1 \cdot \gamma_2 = \gamma_2 \cdot \gamma_2 \mod 2$, the formula above implies that $\tilde{q}(\gamma_1 * \gamma_2) = \tilde{q}(\gamma_2 * \gamma_1)$ and that the map $\tilde{q}: \pi_1(F) \to \mathbb{Z}/2\mathbb{Z}$ factors through $H_1(F;\mathbb{Z})$ and $H_1(F;\mathbb{Z}/2\mathbb{Z})$.

Thus, to compelete the proof we just need to check the formula $\tilde{q}(\gamma_1 * \gamma_2)$. For simplicity, let the curves γ_1 and γ_2 intersect transversely at one point, and let D_1 and D_2 be the surfaces that the curves bound as in the definition of \tilde{q} . Let γ be a smooth connectd sum loop representing $\gamma_1 * \gamma_2$. We get a bounding surface D for γ from $D_1 \cup D_2$ and the curved triangles T_1 and T_2 . Push γ off in the direction of a normal field of γ extending the normal fields on γ_1 and γ_2 . Then γ and its push-off will link, which indicates that $D \cdot D' = D_1 \cdot D'_1 + D_2 \cdot D'_2 + 1 \mod 2$

Lemma 3.9. Arf(M, F) only depends on homology class $[F] \in H_2(M; \mathbb{Z}/2\mathbb{Z})$.

This upcoming proof of Rokhlin's Theorem was originally given by Andrew Casson a former University of Texas Professor.

Proof of Rokhlin's Theorem. Let us consider the manifold $M \# \mathbb{CP}^2 \# \overline{\mathbb{CP}}^2$. Its intersection form is odd and indefinite, hence isomorphic to the form $p \cdot (+1) \oplus q \cdot (-1)$ with $p = b_+(M) + 1$ and $q = b_-(M) + 1$. By Wall's theorem, there exists a $k \ge 0$ such that $(M \# \mathbb{CP}^2 \# \overline{\mathbb{CP}}^2) \# k \cdot (S^2 \times S^2)$ is diffeomorphic to $(p \cdot \mathbb{CP}^2 \# q \cdot \overline{\mathbb{CP}}^2) \# k \cdot (S^2 \times S^2)$. Since

$$(S^2 \times S^2) \# \mathbb{C}\mathrm{P}^2 = \overline{\mathbb{C}\mathrm{P}}^2 \# 2 \cdot \mathbb{C}\mathrm{P}^2, \ (S^2 \times S^2) \# \overline{\mathbb{C}\mathrm{P}}^2 = \mathbb{C}\mathrm{P}^2 \# 2 \cdot \overline{\mathbb{C}\mathrm{P}}^2,$$

We have that for some l_1 and l_2 ,

$$M \# l_1 \cdot \mathbb{CP}^2 \# l_2 \cdot \overline{\mathbb{CP}}^2 = a \cdot \mathbb{CP}^2 \# b \cdot \overline{\mathbb{CP}}^2,$$

where $a = l_1 + b_+(M)$ and $b = l_2 + b_-(M)$. Let $\eta \in H_2(\mathbb{CP}^2) = \mathbb{Z}$ and $\tilde{\eta} \in H_2(\overline{\mathbb{CP}}^2) = \mathbb{Z}$ be the generators represented by the embedded 2-spheres $\mathbb{CP}^1 \subset \mathbb{CP}^2$. Then $\eta \cdot \eta = 1$ and $\bar{\eta} \cdot \bar{\eta} = -1$. If a class F is characteristic in $H_2(M)$ then the class $F_c = F + l_1 \cdot \eta + l_2 \cdot \bar{\eta}$ is characteristic in $M \# l_1 \cdot \mathbb{CP}^2 \# l_2 \cdot \overline{\mathbb{CP}}^2$. The property of being characteristic is preserved under diffeomorphism, therefore, the image of F_c in $a \cdot \mathbb{CP}^2 \# b \cdot \overline{\mathbb{CP}}^2$ is characteristic. Both the Arf-invariant and signature are additive with respect to conenected sums of manifolds and characteristic surfaces. Therefore, if the Rokhlin equality holds true for any of the following 3 pairs $(M_1, F_1), (M_2, F_2)$, and $(M_1 \# M_2, F_1 \cup F_2)$, it is true for the third one. We note that, $\sigma(\mathbb{CP}^2) - \eta \cdot \eta = 0 = \operatorname{Arf}(\mathbb{CP}^2, \eta)$ and $\sigma(\overline{\mathbb{CP}}^2) - \overline{\eta} \cdot \overline{\eta} = 0 = \operatorname{Arf}(\overline{\mathbb{CP}}^2, \overline{\eta})$. Moreover, both the Arf-invariant and signature both change signs if the orientation changes. Therefore, Rokhlin's theorem need only be checked for characteristic surfaces in \mathbb{CP}^2 .

If $\eta \in H_2(\mathbb{C}P^2) = \mathbb{Z}$ is a generator represented by the embedded 2-sphere $\mathbb{C}P^1$, then a class $s \cdot \eta \in H_2(\mathbb{C}P^2)$ is characteristic if and only if and only if s is odd. The complex curve

$$C = \{ [x_0 : x_1 : x_2] : x_0 x_1^{s-1} + x_2^s \} \subset \mathbb{C}P^2$$

is homeomorphic to S^2 and represents the class $s \cdot \eta$ see below. It is smoothly embedded in \mathbb{CP}^2 expect possibly at the point [1:0:0]. Let B be the \mathbb{D}^4 of the radius $\varepsilon > 0$ centered at [1:0:0]. In the affine plane $x_0 = 1$ the intersection $\partial B \cap C$ is given by the equations $x_0 x_1^{s-1} + x_2^s$, $|x_1|^2 + |x_2|^2 = \varepsilon^2$. Therefore, $\partial B \cap C \subset \partial B = S^3$ is the (s, s - 1)-torus knot $k_{s,s-1}$. Let S be a Seifert surface in ∂B with the boundary curve $\partial B \cap C$, then the surface $F = (C \setminus (C \cap \operatorname{int} B)) \cup S$ represents the class $s \cdot \eta$. An easy calculation using the identification

of the quadratic form q and \tilde{q} in the example above shows that

Arf(
$$\mathbb{CP}^2, s \cdot \eta$$
) = Arf($k_{s,s-1}$),
= $(s^2 - 1)((s - 1)^2 - 1)/24 \mod 2$
= $(1 - s^2)/8 \mod 2$,
= $\frac{1}{8}(\sigma(\mathbb{CP}^2) - s\eta \cdot s\eta) \mod 2$.

We introduce a lemma that was used in the previous proof:

Lemma 3.10. The complex curve C in \mathbb{CP}^2 given by the equation $x_0x_1^{s-1} + x^s = 0$ is homeo-morphic to S^2 and represents the homology class $s \cdot [\mathbb{CP}^1] \in H_2(\mathbb{CP}^2)$.

3.3. Representing homology classes by surfaces. Let M be a simply-connected oriented closed smooth 4-manifold. It is known that every homology class of $H_2(M)$ can be represented by a smoothly embedded surface F. The following is one of the most intriguing problem in 4-dimensional topology: given a class $[u] \in H_2(M,)$ what is the minimal genus of $F \subset M$ representing u? The class u is said to be spherical if it can be represented by an embedded 2-sphere. Next we show a quick application of Rokhlin's Theorem to obstruct a homology class in \mathbb{CP}^2 from being a 2-sphere.

Example 3.11. Note that $H_2(\mathbb{CP}^2) = \mathbb{Z}$, so let $\eta \in H_2(\mathbb{CP}^2)$ be the generator of the infinite cyclic group. We know that η can be represented by $[\mathbb{CP}^1] \subset \mathbb{CP}^2$ which is a 2-sphere. We will use Rokhlin's Theorem to show that the homology class $3\eta \in H_2(\mathbb{CP}^2)$ is aspherical. Suppose that 3η is sphreical for sake of contradiction. By Kervaire-Milnor we know that if 3η is sphereical the it must have Arf-invariant equal to 0. We now calculate the $Arf(\mathbb{CP}^2, 3\eta)$,

$$\frac{1}{8}(\sigma(\mathbb{C}\mathrm{P}^2) - (3\eta \cdot 3\eta)) = \frac{1}{8}(1-9) = \frac{-8}{8} = -1 \equiv 1 \mod 2 \neq \operatorname{Arf}(\mathbb{C}\mathrm{P}^2, 3\eta) = 0$$

Therefore, we see that the class 3η is aspherical.

3.4. The Rokhlin invariant. Let Σ be an oriented integral homology 3-sphere. Then there exists a smoothly simply-connected 4-manifold W with even intersection form such that $\partial W = \Sigma$. Then the signature of W is divisible by 8, and

$$\mu(\Sigma) = \frac{1}{8}\sigma(W) \bmod 2$$

is independent of choice of W. We call $\mu(\Sigma)$ the Rokhlin invariant of Σ . Suppose that M is a smooth simply-connected oriented 4-manifold with $\partial M = \Sigma$; we do not even assume a intersection form. Suppose that M has a spherical characteristic surface then,

$$\mu(\Sigma) - \frac{1}{8}(\sigma(M) - F \cdot F) \mod 2.$$

Now to check the formula, form a smooth closed manifold $X = M \cup_{\Sigma} (-W)$. Then F is spherical characteristic surface in X, and

$$\frac{1}{8}(\sigma(M) - F \cdot F) - \mu(\Sigma) = \frac{1}{8}(\sigma(M) - F \cdot F) - \frac{1}{8}\sigma(W)$$
$$= \frac{1}{8}(\sigma(X) - F \cdot F) = 0 \mod 2.$$

Example 3.12. As as concrete exaple, 1-surgery on the trefoil $K = 3_1$, denoted $S_1^3(K)$, has Rokhlin invariant $\mu(S_1^3(K)) = 1$ because $S_1^3(3_1)$ is known to bound the simply-connected smooth spin 4-manifold obtained from \mathbb{D}^4 by attaching eight 2-handles along a framed link with linking matrix $-E_8$.

4. CURRENT RESEARCH INVOLVING ARF-INVARIANT, AND ROKHLIN'S THEOREM

Knot invariants from branched covers of 4-manifolds" Alexandra Kjuchukova discussed two knot $k \subset S^3$ invariants defined in terms of branched covers of 4-manifolds. The first is the Ξ_p invariant, which comes from irregular *p*-fold covers of B^4 . The second one, *j*, is a new concordance invariant of framed knots in 3-manifolds. As applications, I will illustrate how to use Ξ_p to obstruct ribbonness for twist knots; and I will relate Ξ_p and *j* to other classical invariants. Some of this work is joint with Julius Shaneson.