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1 Preface

These are the lecture notes for my 2024 Summer Minicourse on Character-

istic classes, taking place at UT Austin. Section 2.1 is completely optional,

and serves purely as motivation. Sections 2.2- 4.4 serve as the algebraic-

topological portion of the course, and Sections 5 serves as the differential

geometric portion. These two portions are largely independent from one

another and can be read separately.

The first section will provide some light motivation for the use of vector

bundles in differential topology. For a more comprehensive coverage of the

differential geometric aspects covered in this section (and in the rest of the

notes), see [7] or [6]. For the differential topological aspects, see [4]. Later

sections will rely on the cup product structure on cohomology, Poincaré

duality, and the cross product. For these topics, see [2], [3], or [5]. We

will also make use of results regarding the cohomology of fiber bundles, in

particular the Leray-Hirsch theorem, I recommend taking these as a black

box, but the motivated reader should consult [3].

Throughout these notes let K denote the field R or C. We may freely

switch between notions in smooth and continuous categories, and the correct

category should (hopefully) be clear from context.

2 Introduction to Vector Bundles

2.1 Why Vector Bundles?

The key concept of differential calculus is the idea of linearization: given a

nice enough function f : (a, b) → R, there is a unique linear function df(p)

(given by a number, typically written f ′(p)) which best approximates f near

p ∈ (a, b), meaning f(p + tv) ≈ f(p) + tdf(p)v for small v. This means we

have linearized f near p.

Of course, on an open subset U of Rn we can employ identitical ideas

to find linearizations of maps f : U → Rm and classical theorems like the

inverse function theorem and the implicit function theorem tell us how we
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can understand properties of f by understanding properties of df.

The philosophy of differential topology tells us that we should try to

understand global behavior of a map f :M → N by patching together local

information. While the idea of the differential as a map U × Rn → Rm

becomes less meaningful on a general smooth manifold, we can reinterpret

it as a map TU→ TRm or as a bundle map TU→ f∗TRm. This globalizes to

the vector bundle morphism Tf : TM → f∗TN. One can think of the space

of nearby maps to f as sections of the vector bundle f∗TN, and hence one

can turn non-linear partial differential equations on Hom(M,N) into partial

differential equations on vector bundles related to f∗TN, which are simpler

to deal with.

The pointwise local properties of this map tell us something about the

global behavior of the function, for instance, the constant rank theorem says

that if Tfp is of constant rank for all p ∈ M then f−1(p) is an embedded

submanifold of M.

Another useful concept of linearization coming from vector bundles is

that of a normal bundle. Given an embedded submanifold ι : M → N, the

differential yields the following short exact sequence of vector bundles:

0→ TM→ ι∗TN→ NM/N → 0

where NM/N,p := TpN/TpM. Infinitesimally, the normal bundle tells us about

how to move away from M inside of N. This is manifest in the content of

the tubular neighborhood theorem:

Theorem 2.1. Let ι :M→ N be a embedded submanifold, then there is an

open neighborhood of M in N which is diffeomorphic to a convex neigh-

borhood of the zero section of NM/N, via a diffeomorphism preserving

0.

This allows us to capture topological information about howM sits inside

N by understanding NM/N.

Remark. Since M embeds as 0 inside of E for any vector bundle E → M,

every vector bundle is the normal bundle of M inside some other smooth

manifold.
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This idea of linearization allows us to compute self intersections, even if

we only understand the normal bundle.

Proposition 2.2. If M → N is an embedded closed submanifold of middle

dimension, the self intersection ofM in N is equal to that ofM in NM/N.

Exercise 1. Prove proposition 1.2.

It turns out that this self intersection is a homological quantity, and can

be computed using characteristic classes.

We can see that if NM/N
∼=M× Rm then M has zero self intersection in

N. The self intersection somehow quantifies how twisted NM/N is. The idea

behind characteristic classes is to quantify how twisted (i.e. how far from

trivial) various vector bundles are using algebraic topology.

2.2 Formal Definitions and Operations on Vector bundles

The idea of vector bundles, and bundles more generally, is to capture the

notion of smoothly (or continuously) varying families of objects which are

locally trivial, i.e. when we zoom in close enough in the base, the family looks

like the trivial family of a reference fiber. This family, denoted typically

by π : E → B consists of E, B smooth manifolds (or topological spaces)

and π : E → B a smooth (continous) map. Such a triple is called a rank

k vector bundle over B if there is an open cover {Uα}α∈A and a family of

diffeomorphisms ϕα : π−1(Uα) → Kk ×Uα making the diagram:

π−1(Uα) K
k ×Uα

Uα

ϕα

π
pr2

(all this means is that ϕα interchanges π with pr2) and that the transition

maps ϕ−1
α ◦ ϕβ : Kk × (Uα ∩ Uβ) → Kk × (Uα ∩ Uβ) is given by a function

Uα ∩Uβ → GLk(K), where GLk(K) is the space of invertible k× k matrices

with entries in K. E is referred to as the total space, B as the base space,

and π the projection map.
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Figure 1: Vector bundle and a local trivialization

Exercise 2. Prove that for each p ∈ B, π−1(p) carries a natural vector space

structure, and is isomorphic to Kk.

Remark. The product pr2 : Kn × X → X is a rank n vector bundle over X

with a global trivialization given by the identity, this is called the trivial

rank n vector bundle over X.

Example 1. The tangent bundle TM → M to a smooth manifold Mn is a

prototypical example of a vector bundle.

Exercise 3. Prove, using your favorite definition of the tangent bundle, that

TM→M is a vector bundle.

Example 2. Consider projective space: Pn(K) := (Kn+1\{0})/K∗. Geomet-

rically, this is the space of one dimensional subspaces of Kn+1. There is a

tautological family of vector spaces parameterized by Pn(K), π : τ→ Pn(K)

given by associating to each element [x] ∈ Pn(K) the subspace that it spans,

i.e. Kx. τ lives as a subspace of the trivial bundle Kn+1×Pn(K), as the set of

elements (v, [x]) such that v = λx for some λ ∈ K. This comes with natural lo-

cal trivializations over the image of {(x0, x1, . . . , xn)|xi 6= 0} under the quotient
map, denote this open set by Ui. Given a point x = [(x0, x1, . . . , xn)] ∈ Ui
we can write it as x = [(x0

xi
, x1
xi
, . . . , 1, . . . , xn

xi
)] so that a vector v ∈ τx can

be written uniquely as v = α(x0
xi
, x1
xi
, . . . , 1, . . . , xn

xi
). This yields a map from

π−1(Ui) → K×Ui, v = α(x0xi ,
x1
xi
, . . . , 1, . . . , xn

xi
) 7→ (α, [x0, x1, . . . , xi, . . . , xn]).
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Example 3. Consider the trivial line bundle over R, pr2 : R × R → R.

This admits a Z action by a(x, y) = ((−1)ax, y + a). Denote ρ : R → R/Z

and ρ ′ : R × R → (R × R)/Z the projection maps. Since the Z action on

R× R commutes with the projection pr2 : R× R → R, there is unique map

(R× R)/Z → R/Z making the following diagram commute:

R× R R

(R× R)/Z R/Z

pr2

ρ ′ ρ

π

The quotient π : (R×R)/Z → R/Z admits a vector bundle structure. Think-

ing more geometrically, one can picture a fundamental domain of R×R as a

strip R× [0, 1] and the identification is gotten by identifying R×0 with R×1
via (x, 0) 7→ (−x, 1). This yields the classic picture of the Möbius strip!

Exercise 4. Prove that (R× R)/Z → R/Z is a vector bundle.

Definition 2.3. Given a vector bundle (or any bundle for that matter) a helpful

idea is the notion of a section (or historically, cross-section). Intuitively, a

section of π : E → B is a continuous (smooth) choice of an element of the

fiber Eb above each point b ∈ B. Formally, a section is a continous (smooth)

map σ : B→ E with π ◦ σ = IdB.

Remark. Every vector bundle comes with a natural section given by the as-

signment of 0 to each point in B. This means that B always comes embedded

in E as the image of the zero section. In the images of vector bundles, both

here and elsewhere, you will find the zero section included.

The sections of a trivial bundle K
n × B are given by maps B → K

n, i.e.

by vector valued functions on B. In this way, we can think of sections of a

vector bundle as “twisted” Kn valued functions on B.

Remark. Given two families of objects over a base B, π, π ′ : E, E ′ → B, a

morphism of these families is naturally defined as a morphism of the total

spaces E → E ′ which covers the projections, i.e. the following diagram
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commutes
E E ′

B

If the fibers have additional structure, we would ask that this morphism

preserve that structure. This leads to the following definition.

Definition 2.4. Given π, π ′ : E, E ′ → B vector bundles over K, a morphism of

vector bundles (π, E, B) → (π ′, E ′, B) (often denoted by E → E ′) is a map

T : E→ E ′ with π ′ ◦ T = π such that the restriction to each fiber Ep → E ′
p is

a linear map.

By applying operations that are continuous to each of the fibers of a

bundle we can create new vector bundles from old.

Example 4. Let π : E→ B and ρ : E ′ → B be vector bundles over B of rank

k and r respectively. We can form their fiberwise direct sum (the so called

Whitney sum) E ⊕ E ′ :=
⊔

b∈B π
−1(b) ⊕ ρ−1(b). As a set this comes with a

natural map πE⊕E ′ : E⊕ E ′ → B by taking π−1(b)⊕ ρ−1(b) ∋ (v,w) 7→ b.

Theorem 2.5. The direct sum πE⊕E ′ : E ⊕ E ′ → B carries a natural vector

bundle structure.

Proof. We can naturally topologize a vector bundle by enforcing the local

trivializations to be homeomorphisms on the image. That is, a vector bun-

dle E is given the unique topology in which ϕα : π−1(Uα) → K
k × Uα is

a homeomorphism for each Uα the domain of a local trivialization.. This

means we can toplogize E ⊕ E ′ by specifying a collection of local trivializa-

tions. Given local trivializations {(Uα, ϕα)}α∈A and {(Vγ, ψγ)}γ∈A ′ for E and

E ′ respectively, we can specify a local trivialization Φαγ : π
−1
E⊕E ′(Uα ∩ Vγ) →

Kk+r×Uα∩Vγ by π−1(b)⊕ρ−1(b) ∋ (v,w) 7→ (pr1(ϕα(v)), pr1(ψγ(v)), b). The

inverse mapΦ−1
αγ is simply given by (v,w, b) 7→ (ϕ−1

α (v, b), ψ−1
γ (w, b)) so that

the transition maps Φ−1
αγ ◦Φβδ are given by (v,w, b) 7→ (ϕ−1

α ◦ϕβ(v, b), ψ−1
γ ◦

ψδ(w, b)) which is valued in GLk+r(K) as a block matrix.
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Remark. A simpler, though more opaque and complicated in the smooth

case, way to prove the preceding theorem is to realize that E⊕E ′ is actually

the fibered product appearing in the following diagram:

E⊕ E ′ E

E ′ B

π

ρ

And the local trivializations yield isomorphisms between restrictions of the

previous diagram and:

Kr+k × (Uα ∩ Vγ) Kk × (Uα ∩ Vγ)

K
r × (Uα ∩ Vγ) Uα ∩ Vγ

Exercise 5. Show that the maps E ⊕ E ′ → E and E ⊕ E ′ → E ′ are bundle

morphisms, and that there are two short exact sequences of vector bundles

(i.e. diagrams of vector bundles which are exact on fibers):

0→ E→ E⊕ E ′ → E ′ → 0

0→ E ′ → E⊕ E ′ → E→ 0

Remark. In general, a short exact sequence of vector bundles would be writ-

ten as

0→ E→ F→ E ′ → 0.

The preceding example is called a split short exact sequence as here we

can write F ∼= E ⊕ E ′ with a map which respects the inclusion E → F and

projection F→ E ′. In the appropriate topological and smooth categories, i.e.

where we consider vector bundles with continuous or smooth transition maps

and morphisms (defined over the correct domain of course), every short exact

sequence is split due to the existence of Euclidean and Hermitian metrics,

over K = R and K = C respectively. This is not the case in places like

complex geometry, where splittings in the smooth category almost never

respect the holomorphic structure.
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Another way of yielding new vector bundles from old is that of the pull-

back bundle. Given π : E → B a vector bundle over B and f : B ′ → B, as a

topological space we can form the pullback square:

f∗E E

B ′ B

f∗π π

f

The space f∗E = {(v, b) ∈ E × B ′ : f(v) = π(b)} so that the projection

f∗E→ B ′ is given by the restriction of E×B ′ → B ′ and the fiber f∗Eb ′ = Ef(b);

this is the most natural operation to do, we just associate to each point in

the domain of f the fiber of the point that f takes it to.

Figure 2: A Pullback Bundle

Exercise 6. Prove that f∗E is a vector bundle over B ′.

To a pair of vector bundles E and E ′, we can define Hom(E, E ′) as the

total space of a vector bundle with fiber Hom(E, E ′)p := Hom(Ep, E
′
p).

9
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Exercise 7. Prove that Hom(E, E ′) is a vector bundle, and the space of vector

bundle homomorphisms E → E ′ is naturally isomorphic (as a vector space)

to the space of sections of Hom(E, E ′).

Remark. The structures given above indicate that one should form the cate-

gory of vector bundles Vect(X) where the morphisms are given by morphisms

of vector bundles, and that this category should carry some abelian like struc-

ture. However, the natural definition of the kernel of a morphism F : E→ E ′

as the sub-space of E for which F vanishes need not be a vector bundle as

the ranks of the fibers may jump when the rank of F changes. One could

consider the category equipped with morphisms with constant rank, but this

severely limits the applications of such a theory.

3 Oriented Vector Bundles and the Euler Class

3.1 Euclidean and Oriented Vector bundles

Thinking of vector bundles as families of vector spaces over our base, it makes

sense to equip them with structures we often equip vector spaces with, which

vary in a smooth/continous way. The first of these notions is that of an inner

product space, which yields Euclidean vector bundles.

Definition 3.1. Let π : E→ B be a vector bundle over R. A Euclidean structure

on E is the data of a smooth/continous map E×π E→ R (i.e. a collection of

maps Ep × Ep → R) which is an inner product on each fiber.

Remark. When B is paracompact, one can use a partition of unity argument

to show that every real vector bundle admits a Euclidean structure, and that

this choice is unique up to homotopy (in a precise sense).

Just as a we can orient a vector space, by choosing a class of positively

oriented ordered bases, we can think about choosing a continous or smooth

family of orientations.

Definition 3.2. Let E → B be a rank k real vector bundle. From E we can

create the orientation bundle Or(E) → B with

Or(E)p = {(v1, . . . , vk) ∈ Ekp|{v1, . . . , vk} is a basis for Ep}/ ∼,

10
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where (v1, . . . , vk) ∼ (u1, . . . , uk) if the matrix A with ui =
∑

jA
j
ivj has

det(A) > 0. Or(E)p is precisely the set of orientations of Ep.

Remark. Since every real vector space only has 2 orientations, the map

Or(E) → B is a double cover, often called the orientation double cover of E.

Remark. At this point, we could make a detour into the world of Stiefel-

Whitney classes. Assuming B is connected, a nontrivial (i.e. connected)

double cover defines a surjective homomorphism w1(E) : π1(B) → Z/2Z by

the action of the fundamental group as the deck transformations of Or(B),

the trivial double cover induces the trivial action on Z/2Z since π1(B) acts

trivially on the space of connected components of any cover. The Hurewicz

theorem and universal coefficients then tell us that Hom(π1(B),Z/2Z) ∼=

Hom(H1(B,Z),Z/2Z) ∼= H1(B,Z/2Z) , so that w1(E) ∈ H1(B,Z/2Z), but we
won’t say much more about Stiefel-Whitney classes.

Definition 3.3. An orientation for E → B is a section B → Or(E), i.e. a

continously varying choice of orientation on each Ep. E is said to be orientable

if there exists an orientation.

Remark. Our previous remark tells us that if B is simply connected, E is

necessarily orientable! One can make this connection through the language

of Stiefel-Whitney classes, characteristic classes for not-necessarily-oriented

real vector bundles.

Remark. In the case of real line bundles, the concept of orientation is much

simpler. Let L→ B be a real line bundle, i.e. rk(E) = 1. The space of bases of

Lp is Lp\0. This means that the orientation bundle is simply (L\(0(B)))/R+.

We can use this to see that the open Möbius strip is not orientable as a vector

bundle over S1. We can identify the quotient with the boundary of the closed

Möbius strip, which is not a trivial double cover over S1 and hence admits

no section. In fact, a real line bundle is trivial if and only if it is orientable.

Exercise 8. Let L → B be a real line bundle. Prove that L is trivial if and

only if it is orientable.

11
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3.2 The Euler Class

In the case of smooth manifolds, one can make use of Poincaré duality to

construct characteristic classes in a manifestly geometric way.

Definition 3.4. Let E → M be a rank k smooth oriented vector bundle over

M an oriented closed manifold. The Euler class e(M) ∈ Hk(M,Z) is defined
by PD(σ−1(0)) for σ ∈ Γ(E,M) with σ intersecting the zero section of E

transversely.

Proposition 3.5. e(E) is well defined, and satisfies e(f∗E) = f∗e(E) for f :

M→ N a smooth map, and e(E⊕ F) = e(E)e(F).

Proof. Endow E with a Euclidean structure. We can then construct a sphere

bundle over M with fibers the 1-pt compactification of Ep, denote this by

B(E) → M. (Think of this as taking the double of the unit disc bundle

D(E) →M). This space is a smooth oriented closed manifold with orienta-

tions coming from the fiber orientations and the base. Denote ι :M→ B(E)

the zero section, thought of as a section of B(E) → M. We then write

e(E) = ι∗(PD(σ∗[M])). Any two sections M → E are isotopic since Γ(E,M)

is a vector space and hence contractible. As such the class e(E) does not

depend on our choice of section.

Assume that f : M → N is a smooth map and π : E → N is an oriented

euclidean vector bundle. The space M × E → M ×N by id× π is a vector

bundle over M × N. A transversely vanishing section σ of E extends to a

transversely vanishing section of M × E by σ̃ = idM × σ. Here, σ̃−1(0) =

M × σ−1(0). Let σ ′ be a section of f∗E. Such a section can be extended

to a transversely vanishing section σ̃ ′ of M × E, by considering M as the

image of Γ : M → M ×N,m 7→ (m, f(m)), and f∗E ∼= Γ ∗(M × E). As such

PD(σ̃
′−1(0)) = PD(σ̃−1(0)) = 1× e(E) and

e(f∗E) = PD(σ
′−1(0)) = Γ ∗(1× e(E)) = f∗e(E)

To prove the product formula, consider π, π ′ : E, E ′ → M two vector

bundles over M. We can write E⊕ E ′ = ∆∗(E× E ′) where ∆ :M→M×M
is the diagonal map, and E × E ′ → M × M is given the natural vector

12
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bundle structure. Given σ, σ ′ transversely vanishing sections of M and M ′

respectively, Σ = σ × σ ′ is a transversely vanishing section of E × E ′, with

Σ−1(0) = σ−1(0) × σ ′−1(0). We may now conclude e(E× E ′) = e(E) × e(E ′)

so that

e(E⊕ E ′) = e(∆∗(E× E))
= ∆∗(e(E× E ′))

= ∆∗(e(E)× e(E ′))

= e(E)e(E ′)

Remark. There are clearly issues with this definition, i.e. that it requires

the technology of Poincaré duality, but it has very high intuitive content.

We can see imediately that the Euler class gives an obstruction to finding a

nonvanishing section of E.

Proposition 3.6. Let E→M be an oriented vector bundle over the oriented,

closed manifold M. If E admits a non-vanishing section, then e(E) = 0.

Proof. Let σ be a non-vanishing section of M. Given σ a nonvanishing

section we conclude that σ ′−1(0) = ∅ and hence e(E) = 0.

Remark. Proposition 3.6 can actually be upgraded to an if and only if state-

ment using obstruction theory, see [8]. Hence the Euler class gives the only

obstruction to the existence of a non-vanishing section.

Since the cup product is dual to intersections, the Euler class allows us

to compute self intersection numbers cohomologically.

Proposition 3.7. If S → M is a closed, oriented, middle dimensional sub-

manifold, the self intersection number of S, is given by the Poincaré

dual of the Euler class, in equations:

#(S ∩ S) = 〈e(NS), [S]〉.

Proof. By the tubular neighborhood theorem, there is an open neighborhood

of S which is diffeomorphic to NS and hence a transverse pushoff of S can

be produced by taking a transversely vanishing section σ : S → NS and

#(S ∩ S) = σ(S) ∩ S = PD(e(NS)) ∩ [S] = 〈e(NS), [S]〉.

13
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This allows us to state and prove the theorem that gives the Euler class

its name:

Theorem 3.8. If M is a closed oriented smooth manifold, then χ(M) =

〈e(TM), [M]〉. Where TM is considered as an oriented vector bundle

with orientation inherited from M.

Proof. Let σ be a transversely vanishing section of TM. Poincaré-Hopf tells

us that χ(M) = #(σ−1(0)) and hence χ(M) = 〈e(TM), [M]〉.

From this we should interpret the Euler class as a generalized Euler char-

acteristic, which tracks how “twisted” a space M is as the zero section of E.

In future potions of the course, Chern-Weil theory will allow us to exhibit

a representative of e(N) as a differential form on M, yielding a connection

between the topology of self intersection with the geometry of differential

forms and curvature. This is an incarnation of the principle which yields

the Gauss-Bonnet theorem, and its generalization the Chern-Gauss-Bonnet

theorem.

3.3 Axiomatics of the Euler Class

The naturality properties of the Euler class from Proposition 3.5 allow us to

think of the Euler class more categorically. To each smooth manifoldM, we

can associate the set of isomorphism classes of (oriented) vector bundles over

M, with field K, VectK(M). This is set valued as any vector bundle over M

is determined by the data of its trivializations over a basis for its topology.

This assignment yields a contravariant functor VectK : SmMan → Set with

f 7→ (E 7→ f∗E), (It turns out that this functor is representable by a classifying

space, at least in the topological category). The cohomology functor also

yields such a functor H∗(−,Z) : SmMan → Set. The fact that e(f∗E) = f∗e(E)

means that the Euler class is a natural transformation between these two

functors. A natural question is whether or not we can characterize the Euler

class uniquely through these properties.

Exercise 9. Prove that there is a one to one correspondence between char-

acteristic classes, i.e. an assignment of k(E) ∈ H∗(B) for every isomorphism

14
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class of K-vector bundles E→ B which is natural k(f∗E) = f∗k(E) ∈ H∗(B ′)

for every map f : B ′ → B, and natural transformations between the VectK

functor and the cohomology functor H∗(−).

Proposition 3.9. The Euler class is the unique natural transformation be-

tween VectK and H∗(−,Z) satisfying the following axioms:

a) e(E⊕ E ′) = e(E) ∪ e(E ′)

b) If Ē is the orientation reversed copy of E then e(Ē) = −e(E)

c) The Euler class of τ→ P1(C) has 〈e(τ), [P1(C)]〉 = −1.

d) The Euler class’ mod 2 reduction is the top Stiefel-Whitney class.

4 Complex Vector Bundles and Chern Classes

4.1 Hermitian Vector Bundles

Definition 4.1. Let V be a finite dimensional complex vector space. A Her-

mitian metric on V is a map h : V × V → C such that h(λv + u,w) =

λh(u,w) + h(v,w), h(v, u) = h(u, v) for all u, v,w ∈ V and λ ∈ C with the

property that h(u, u) ≥ 0 for all u ∈ V and h(u, u) = 0 if and only if u = 0.

Hermitian metrics are the standard way to measure angles and lengths

on a complex vector space.

Definition 4.2. Let E→ B be a complex vector bundle. A Hermitian structure

on E is a continuous choice of Hermitian metrics on each fiber, i.e. a map

E×πE→ C such that the restriction to each fiber Ep×Ep → C is a Hermitian

metric.

Exercise 10. Prove that for any B a paracompact space, and E → B a

complex vector bundle, E admits a Hermitian structure.

Example 5. Any choice of Hermitian metric h on V a C-vector space natu-

rally induces a Hermitian metric on τ→ P(V) as τ is a subbundle of V×P(V),

and h : V × V → C gives a metric on V × P(V).

15
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4.2 The First Chern class

Before setting out on defining the first Chern class, we must note a funda-

mental fact about complex line bundles.

Proposition 4.3. Let L → B be a complex line bundle over B. Considered

as a real vector bundle, L admits a natural choice of orientation.

Proof. Let (Uα, ϕα) be a system of (complex) local trivializations of L. Over

each Uα choose the orientation [(ϕ−1(1), ϕ−1(i))]. Since the transition maps

of (Uα, ϕα) are valued in GL1(C) ⊂ GL2(R)+, all transition maps are of

positive determinant and this choice of orientation globalizes.

Now, from any complex vector bundle E → B we naturally obtain a

complex line bundle det(E) → B. There are several ways to define det(E).

One way to think about it is det(E)p = ∧dimEE. For L a complex line bundle

det(L) =
∧1
L ∼= L.

Definition 4.4. We define the first Chern class of E to be c1(E) := e(det(E)).

Remark. When equipped with the opposite complex structure, gotten by

replacing i with−i, this has the effect of changing the orientation by (−1)rk(E)

as there are rk(E) many minus signs introduced into our natural orientation.

This means that for a line bundle, the natural orientation [(e1,−ie1)] differs

from the opposite [(e1, ie1)] by −1. Hence c1(Ē) = −c1(E).

Proposition 4.5. The first Chern class is natural, i.e. for f : B ′ → B,

c1(f
∗E) = f∗c1(E). Furthermore, c1 satisfies a product operation, c1(E ⊕

E ′) = c1(E) + c1(E
′)

Proof. As oriented real vector bundles, we have det(f∗E) ∼= f∗ det(E) so that

by naturality of the Euler class

c1(f
∗E) = e(det(f∗E)) = e(f∗ det(E)) = f∗e(det(E)) = f∗c1(E)

For the product operation, note that det(E⊕ E ′) ∼= det(E) ⊗ det(E ′).

In the “geometric” Euler class picture, we can see that given transversely

16
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vanishing sections σ, σ ′ of det(E) and det(E ′) respectively, (σ ⊗ σ ′)−1(0) =

σ−1(0) ∪ (σ ′)−1(0) so that e(det(E) ⊗ det(E ′)) = e(det(E)) + e(det(E ′)) as

desired.

The first Chern class, by our previous observations measures the obstruc-

tion to finding a section of det(E). Such a section gives a kind of “complex

orientation” of E.

Example 6. Consider the dual of the tautological line bundle over P1(C),

τ∗ = Hom(τ,C × P1(C)). τ has a natural embedding inside of the trivial

C2 bundle over P1(C) by embeddding each line τp as itself in C2. As such,

restriction of functionals yields a surjection (C2)∗ × P1(C) → τ∗. From a

functional λ : C2 → C, we yield a section λ̃ of τ∗. For non-zero λ, ker λ is one

dimensional and hence λ̃−1(0) is a single point. Without loss of generality

take λ = e1, the projection onto the first factor. With respect to the local

trivialization U2 = C
2\{z2 = 0}, ϕ : C × U2 → τ by (α, [z1 : z2]) 7→ (α z1

z2
, α).

We see that λ ◦ ϕ(α, [z1 : z2]) = α z1
z2

which vanishes to first order at [0 : 1].

This tells us that c1(τ∗) = 1. This equation really means that c1(τ∗) =

[P1(C)].

Additivity tells us that as τ⊗ τ∗ ∼= C× P1(C) we have c1(τ) = −1.

4.3 Axiomatics of the Chern class

Now, that we have conceived of these two characteristic classes for complex

vector bundles, the Euler class e(E) ∈ H2rk(E)(B,Z), and the first Chern class

c1(E) ∈ H2(B,Z), one might wonder if there are other classes occupying

H2j(B,Z). These classes exist, and are Chern classes. There are many ways

of defining them, and we will start off with the axiomatic approach.

We will package the Chern classes together in the total chern class c(E) ∈
H∗(B,Z), which lives inside the cohomology ring of B. This allows us to

neatly package the generlization of property (a) from our axiomatization of

the Euler class.

Definition 4.6. Let c : VectC → H∗(−,Z) be a natural transformation (i.e.

an assignment of cohomology classes to each isomorphism class of vector

17
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bundles which commutes with pullbacks). Let ck(−) denote the component

of c(−) lying in Hk(−,Z). c is a total Chern class if

a) c(E⊕ E ′) = c(E) ∪ c(E ′),

b) ck(Ē) = (−1)kck(E),

c) and c1(τ) = −[P1(C)].

Theorem 4.7. The total Chern class exists and is unique.

One way to prove the existence and uniqueness of the total Chern class

is through classifying spaces. We previously stated that the functor VectkK :

Top→ Set is representable in the topological category, at the level of homo-

topy. More specifically there is a natural isomorphism between the functor

X 7→ [X, Y] and Vectk
K
, for some space Y, with the correspondence gotten by

mapping f ∈ [X, Y] to f∗E for some bundle E→ Y. Since a characteristic class

is a natural transformation between Vectk
K
and H∗(−,Z), the Yoneda lemma

tells us that set of characteristic classes of rank k vector bundles is given by

H∗(Y,Z). Given a particular element c ∈ H∗(Y,Z), we can verify that it sat-

isfies the axioms of Definition 4.6 by understanding explicitly the properties

of the chosen class. We will go down a different path, a la Grothendieck,

which exhibits the Chern classes as measures of a particular bundle X → B

to have cohomology isomorphic (as a ring) to H∗(B,Z) ⊗ H∗(F,Z) for F the

fiber of X.

4.4 The Splitting Principle

The aim of this problem session is a loosely guided proof of Theorem 4.7.

Much of the coverage is inspired by the approach of [1]. There are several

different proofs, with varying levels of concreteness and constructiveness.

Our proof will focus on the method of the splitting principle, a method which

generalizes in a particularly nice way to the algebraogeometric setting. The

basic idea is as follows:

i) Given a complex vector bundle p : E→ B construct a space (in reality

a fiber bundle) π : XE → B such that π∗E ∼=
⊕

i≤rk(E) Li where each Li

18
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is a line bundle over X. These line bundles are called the Chern roots

of E, as we have factored π∗E into a sum of lines.

ii) We then wish to prove that the induced map on cohomology π∗ :

H∗(B,Z) → H∗(X,Z) is injective.

iii) Then we can produce the Chern class by forcing the product formula

to hold, i.e. define c(E) so that π∗c(E) =
∏

i(1+ c1(Li)).

iv) Then prove well definedness.

Before we delve into the splitting principle, we need to recall the structure

of the cohomology of P(Ck). Given V → Ck a k − 1 dimensional subspace,

the image of V\{0} under the quotient map Ck\{0} → P(Ck), denoted by

P(V) is homeomorphic to a copy of P(Ck−1). The complement P(V)c is

homeomorphic to Ck−1. Thinking of P(C2) as the one point compactification

of C, i.e. the CW complex obtained by attaching a 2-cell to ∗, we can use this

process to inductively put a cell structure on P(Ck), by attaching a 2k − 2

cell to P(Ck−1). As such the cellular homology cochain complex for P(Ck) is

0→ Z → 0→ Z → . . .→ 0→ Z → 0

where the non-zero groups are in grading 2i for k− 1 ≥ i ≥ 0. Since the dif-
ferentials are all 0, we can write the cohomology of P(Ck) as H∗(P(Ck),Z) ∼=

Z[c1]/c
k
1 where c1 = c1(τ) is placed as the generator in degree 2. In fact, this

isomorphism respects the ring structure.

Proposition 4.8. Let p : E → B be a complex vector bundle. There exists

π : S→ B such that π∗E ∼=
⊕

i Li and π
∗ is injective on cohomology.

Proof. Let π : E → B be a complex vector bundle. Define π1 : P(E) → B to

be the fiber bundle with P(E)p = P(Ep). We can see that this is a fiber bundle

over B by projectivizing the transition functions coming from a system of

local trivializations of E→ B. Each of the fibers of P(E) carry the tautological

line bundle τ(Ep) → P(Ep) and the these glue together to give a line bundle

τ(E) → P(E). This yields the following short exact sequence of vector bundles

0→ τ(E) → π∗
1E→ π∗

1E/τ(E) → 0.
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Introducing a Hermitian metric allows us to split this short exact sequence

(WARNING: in the algebraic category not all short exact sequences of vector

bundles split, and in fact a weaker version of axiom a is used, that any short

exact sequence of vector bundles 0 → E ′ → E → E ′′ → 0 has c(E) =

c(E ′) ∪ c(E ′′))

Splitting this sequence allows us to write π∗
1E

∼= τ(E) ⊕ π∗
1E/τ(E), now

having split π∗
1E into a sum of τ(E) and π∗

1E/τ(E) we can apply the process

inductively to produce XE → B for which π∗E ∼=
⊕

Li.

Exercise 11. Describe the fiber of this repeated process of projectivization

as a quotient of some Lie group by one of its subgroups.

In order to show that the projection is injective on cohomology we may

apply the following theorem:

Theorem 4.9. (Leray-Hirsch) Let X→ B be a fiber bundle with fiber i : F→
X such that H∗(F,Z) is a free abelian group and i∗ : H∗(X,Z) → H∗(F,Z)

is surjective. Then there exists an isomorphism L : H∗(B,Z)⊗H∗(F,Z) →
H∗(X,Z) such that the following diagram commutes

H∗(B,Z)⊗H∗(F,Z) H∗(X,Z)

H∗(B,Z)

L

f
π∗

where f(b) = b⊗ 1.

So, if we can prove the hypotheses of Theorem 4.9 then the injectivity

of f implies the injectivity of π∗. Proving these hypotheses can be rather

tedious and uninstructive, so for the sake of brevity we will work in the case

where a system of local trivializations has only two elements U,V ⊂ B.

Proposition 4.10. The cohomology of F, H∗(F,Z) is a free abelian group.

Proof. Since each level is gotten by projectivizing the quotient of the previ-

ous bundle, it suffices to prove the following:
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Lemma 4.11. Let E → B be a complex vector bundle. Then the coho-

mology of P(E) is a freely generated module over H∗(B,Z), generated by

1, x, x2, . . . , xrkE−1 where x ∈ H2(P(E),Z) with ι∗x = c1(τ).

Proof. Let ι : P(Ck) → P(E) denote the inclusion of a fiber. Naturality of

c1(τ) tells us that since ι∗τE = τ that ι∗c1(τE) = c1(τ). Since H∗(P(Ck),Z) →
H∗(P(E),Z) is a ring homomorphism, and H∗(P(Ck),Z) ∼= Z[c1]/c

k
1, ι

∗ is

necessarily surjective and the Leray-Hirsch theorem applies.

Definition 4.12. Since H∗(P(E),Z) is a free module over H∗(B,Z), generated

by 1, x, x2, . . . , xrkE−1 The equation

xk =

k−1∑

i=1

aix
i

has a unique solution for some ai = π∗bi. We define the ith Chern class as

ci(E) = −bk−i.

We can think of this idea as telling us that the cohomology of P(E) is

additively H∗(M,Z)⊗H∗(P(Ck)), and the Chern classes measure the overall

twisting of the ring structure on the cohomology. This gives a presentation

of H∗(P(E),Z) ∼= H∗(B,Z)[x]/(
∑rkE

i=1 ci(E)x
rkE−i).

Exercise 12. Using the previous ideas, write a presentation for the ring

structure cohomology of P(E/τ) as a quotient of H∗(B,Z)[x1, x2].

Exercise 13. Set B = U∪V and p−1(U) ∼= F×U, p−1(V) ∼= F×V. Using the
Mayer Vietoris sequence for E = p−1(U)∪p−1(V), and the Künneth formula,

prove that for x ∈ U ∩ V, i∗ : H∗(X,Z) → H∗(F,Z) is surjective.

Proceeding by induction, the preceding work tells us that as a ring

H∗(X,Z) ∼= H∗(B,Z)[x1, . . . , xrkE]/I for some ideal I ⊂ H∗(X,Z)[x1, . . . , xrkE].

We have a map Λj : X→ P(E) which sends the point L1⊕ . . . Lk to [Lj]. Since

Λ∗
j (τ(E))a = Lj, Λ∗

j x = c1(Lj) = xj and hence c1(Lj) satisfies

k∑

i=1

xijcrkE−i(E) = 0
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for every j. The theory of symmetric polynomials tells us that

ci(E) = (−1)iσi(x1, . . . , xrkE)

for σi the ith elementary symmetric polynomial

σi(x1, . . . , xrkE) =
∑

I⊂[rkE],|I|=i

xI

so that
∑
ci(E) =

∑
σi(x1, . . . , xrkE) =

∏k
j=1(1 + xj) =

∏k
j=1(1 + c1(Lj)) so

that our definitions coincide.

Remark. When defining the Chern classes, we never proved that our defini-

tion did not depend on the choice of lifts of the generators of H∗(P(Ck),Z),

but since we have exhibited the total Chern as a polynomial in (1+ c1(Lj)),

it does not depend on the choice of lifts.

Exercise 14. Prove the product formula c(E ⊕ E ′) = c(E)c(E ′) using the

splitting principle.

Exercise 15. For L a complex line bundle and E rank 2 complex vector

bundle, find a formula for c(L⊗ E ′).

Exercise 16. Prove that c(E) is natural.

Hint : Note that the since the construction of XE really comes from gluing

together XEb , that the construction commutes with pullbacks, i.e. f∗(XE) =

Xf∗E, and the induced map f̃ : Xf∗E → XE has f̃∗Lj = L̃j, where Lj → XE and

L̃j → Xf∗E are the Chern roots.

5 Principal Bundles, Connections, and Curvature

5.1 Principal Bundles

The principal idea behind principal bundles is to understand families by

understanding their automorphisms, a la Felix Klein. This is best manifest

in the correspondence between vector bundles and GLn(K) bundles. Given

E→ B a rank k K-vector bundle over B, we can associate a bundle of frames

FE→ B, the fiber FEp will be the space of bases of Ep. Formally this can be
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thought of as isomorphisms from Kn → Ep. Hence FE ⊂ Hom(Kn × B, E).
The natural matrix multiplication of GLn(K) on Hom(Kn, E) restricts to FE

and FE/GLn(K) ∼= B. This action is a right action. This space FE is called a

principal GLn(K) bundle

Definition 5.1. Let G be a topological group. A triple π : P → B, where P

is a space with right action by G, is called a principal G bundle if π is G

invariant, P/G ∼= B by the orbit map, and for each b ∈ B there exists a

U ⊂ B open and an isomorphism of G spaces

π−1(U) G×U

U

where G×U is equipped with the action g(g ′, u) = (g ′g, u).

The latter part of this definition means that G acts on each fiber of π

freely and transitively, i.e. Pb is a G-torsor. We can thus distill the previous

definition to: a principal G-bundle is a bundle of G-torsors.

Proposition 5.2. Let G be the trivial G torsor. The space of automorphisms

of G is given by G itself.

Proof. If ϕ : G → G is a G-torsor automorphism, then ϕ(g) = ϕ(1)g so

there is a correspondence between AutTors(G) and G given by left multipli-

cation by G.

This means that the transition maps ϕα ◦ ϕ−1
β : G × (Uα ∩ Uβ) → G ×

(Uα ∩Uβ) must be given by a map Uα ∩Uβ → G.

To each space B, we may associate the set of isomorphism classes of

principal G-bundles BunG(B) (a morphism of principal G bundles is a G

equivariant map P → P ′). BunG(−) defines a contravariant functor Top →
Set with morphisms BunG(f)(P) = f∗P for a map f : B ′ → B.

Proposition 5.3. There is a natural isomorphism of functors VectnK =⇒
BunGLn(K), taking a rank n vector bundle over B to its bundle of frames.
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Proof. As we have already defined such a natural transformation, we need

only prove that it has an inverse. Given a principal GLn(K) bundle P → B,

associate to it the vector bundle (P × Kn)/GLn(K) equipped with the right

action g(p, v) = (gp, g−1v). Given a local trivialization for P, ϕα : π−1(Uα) →
G×U, this induces an equivariant identification π−1(Uα)×Kn → G×Uα×Kn

and hence a homeomorphism (π−1(Uα) × Kn)/GLn(K) → Uα × Kn. On

overlaps, the map G× (Uα ∩Uβ)×K
n → G× (Uα ∩Uβ)×K

n will be given

by (g, u, v) 7→ (ϕα ◦ϕ−1
β (g), u, v) ∼ (g, u,ϕβ ◦ϕ−1

α (v)) so that the transition

maps induced by these trivializations are still valued in GLn(K) and hence

(P ×Kn)/GLn(K) is a vector bundle.

There is an isomorphism between (FE × Kn)/GLn(K) and E given by

the map [p, v] 7→ p(v). Matrix multiplication means that this map is well

defined, as [pg, g−1v] 7→ p(gg−1v) = p(v) and since every element of Eb may

be written uniquely as v1e1 + . . . vnen for some vectors e1, . . . , en this map

is bijective. Since this map is given by applying p, it is linear and hence a

vector bundle isomorphism. This tells us that instead of dealing with vector

bundles, we could deal with principal GLn(K)-bundles.

The process by which we take P × K
n and mod out by the antidiagonal

action is called the associated bundle construction. Generally, given a left

representation of ρ : G → Homeo(F) we can form the associated bundle

to P with fiber F, by P ×ρ F := (P × F)/G where the G action on P × F

is g(p, f) = (gp, ρ(g−1)f). This is always a fiber bundle with fiber F and

transition maps valued in ρ(G).

Example 7. The associated bundle construction allows us to obtain all of the

bundles related to a given principal G-bundle by studying its representation

theory. Given π : E → B a vector bundle and FE → B its bundle of frames,

we can form the dual vector bundle E∗ = Hom(E,K) by taking the bundle

associated to the dual representation of GLn(K). More concretely, the action

of GLn(K) on Kn, (g, v) 7→ gv dualizes, to yield an action of GLn(K) on

(Kn)∗ by (g, α) 7→ (v 7→ α(gv)). Since dualization is contravariant, this

would naturally lead to a right action, we will take the inverse in order to

get the corresponding left action. Denote the standard representation of

24



Characteristic Classes, Principal Bundles, and Curvature Jacob Gaiter

GLn(K) and the dual representation by ρ and ρ∗ respectively. Then define

Ẽ∗ = FE ×ρ∗ (K
n)∗, this is meant to be the dual bundle to E. We can see

that as presented there is a natural evaluation map E ×π Ẽ
∗ → K × B as

follows. The standard evaluation map Kn × (Kn)∗ → K is invariant under

the product action of GLn(K) as g · (u, λ) = (gu, (g−1)∗λ) 7→ λ(g−1gu) =

λ(u) for all (u, λ) ∈ Kn × (Kn)∗. Therefore, we have an equivariant map

FE×K
n×(Kn)∗ → FE×K, where Kn×(Kn)∗ is given the right action induced

by the left action above and K has the trivial action. This equivariant map

then descends to FE ×ρ×ρ∗ (K
n × (Kn)∗) → B × K. The map [(p, u, λ)] 7→

([p, u], [p, λ]), Ψ : FE ×ρ×ρ∗ (K
n × (Kn)∗) → (FE ×ρ K

n) ×π (FE ×ρ∗ (K
n)∗) ∼=

E ×π Ẽ
∗ is a bundle isomorphism, so that we get a well defined, fiberwise

bilinear map

(FE×ρ K
n)×π (FE×ρ∗ (K

n)∗) → K× B

Exercise 17. Prove that the map Ψ above is an isomorphism, and the in-

duced map Ẽ∗ → Hom(E,K) is as well.

Remark. The associated bundle P×ρF should not be confused with a fibered

product. The notation P×ρ F is less than optimal, but it is rather compact.

While vector bundles have many sections, a general principal bundle has

no global sections. In fact, a principal G bundle is trivial if and only if it has

a global section. Given a global section σ : B→ P, there is an isomorphism

G× B→ P given by (g, b) 7→ σ(b)g.

Remark. While a vector bundle without structure produces a GLn(K) prin-

cipal bundle over its base, additional structure allows us to yield principal

H bundles for H the fiberwise automorphism group of the structure.

Example 8. If E→ B is an R-vector bundle of rank n, and is equipped with

an orientation, we may construct FEor → B the bundle of oriented frames

of E. We have FEor ⊂ FE ⊂ Hom(Rn × B, E) where a map T : Rn → Eb is

orientation preserving if the orientation (T−1(u1), . . . , T
−1(un)) agrees with

the standard orientation on Rn for (u1, . . . , un) an oriented bases of Eb. Since

GLn(R)
+ preserves the standard orientation on Rn, FEor → B is a principal

GLn(R)
+ bundle.
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Example 9. If E→ B is a rank n R-vector bundle equipped with a Euclidean

structure 〈·, ·〉E, we may construct OFE → B, as OFE ⊂ FE ⊂ Hom(Rn × B)
the bundle of orthonormal frames of E, where a frame T : Kn → Eb is or-

thonormal if 〈Tb(u), Tb(v)〉Eb = 〈u, v〉Rn for all u, v ∈ Rn and b ∈ B. In other

words, OFEb is the space of isometric isomorphisms between (Rn, 〈·, ·〉)Rn

and (Eb, 〈·, ·〉Eb). The action of O(n) (isometric automorphisms of Rn) yields

an action on OFE making OFE a principal O(n)- bundle.

Example 10. If we consider E → B a rank n C-vector bundle equipped

with a Hermitian structure, similar arguments as above yield UFE→ B, the

space of unitary frames of E. More specifically, this is done by looking at

isomorphisms from (Cn, 〈·, ·〉C) and (Eb, 〈·, ·〉Eb). The unitary frame bundle

of E, UFE→ B is a principal U(n)-bundle.

Example 11. From each of the preceding examples, we can recover E by the

mixing construction. If H ⊂ GLn(K) is the relevant automorphism group,

and we denote ι : H → GLn(K) the standard linear representation of H,

then the argument from the proof of Proposition 5.3 gives an isomorphism

between P×ιK
n ∼= E. It is not unreasonable then to say we have the following

natural isomorphisms of functors:

Vectn,or
R

=⇒ BunGLn(R)+

Vectn,eucl =⇒ BunO(n)

Vectn,herm =⇒ BunU(n)

For the rest of this course, we will focus on the differential geometry and

topology of smooth principal G-bundles for G a Lie group. To start, we will

want to study smooth manifolds with right G actions.

Definition 5.4. LetM be a space equipped with right G action (a right G-space

for short). There is a Lie algebra anti-homomorphism g → X(M), ξ 7→ Xξ

called the fundamental vector field map (anti-homomorphism simply means

[Xξ, Xη] = −X[ξ,η]) defined by Xξ(p) =
d
dt

∣

∣

t=0
exp(tξ) · p. These vector fields

are fundamental because they locally generate the action of G.

The evaluation map (ξ, p) 7→ Xξ(p) gives a vector bundle morphism g×
M→ TM
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Proposition 5.5. Let M be a right G-space. If the G action on M is free

then the evaluation map g×M → TM is injective. Moreover, this map

is equivariant with respect to the tangent lift of the G action on TM and

the G action on g×M, (ξ, p) 7→ (Adg−1ξ, gp)

Proof. Assume that g×M→ TM is not injective. That means there is some

(ξ, p) for which d
dt

∣

∣

t=0
exp(tξ)p = 0. Since Xξ is a time independent vector

field this means that exp(tξ)p = p for all t for which exp(tξ) is defined,

contradicting freeness.

To see that this map intertwines the desired actions, it is helpful to note

that g(exp(tξ)p) = (exp(tξ)g)p so

g(Xξ(p)) =
d

dt

∣

∣

∣

∣

t=0

(exp(tξ)g)p =
d

dt

∣

∣

∣

∣

t=0

(gg−1 exp(tξ)g)p

=
d

dt

∣

∣

∣

∣

t=0

(g−1 exp(tξ)g)gp

= XAd
g−1ξ(gp)

The preceding proposition only requires that the action of G is locally

free, i.e. a neighborhood of the identity acts freely, but we only care about

the case in which this action is free. Since a relative open neighborhood of

an orbit of G is the image of exp(−)p : G→M, this tells us that the image

of g in TpM is the tangent space to the orbit of p.

5.2 Connections on Principal Bundles

Let π : P→ B be a principal G bundle. Our local trivializations ensure that

G acts freely on P and hence g × P naturally lives as a subbundle of TP.

We actually have more than this, there is a short exact sequence of vector

bundles (meaning that it is a pair of vector bundle morphisms which are

short exact sequences on each of the fibers.)

0→ g× P → TP
dπ→ π∗TB→ 0
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The bundle g× P is called the vertical bundle, while π∗TB is the horizontal

bundle. The standard picture of a principal bundle displays the fibers of π

vertically and local sections horizontally.

The idea of a connection is to allow us to do the process of parallel

transport, that is given a path γ : I→ B and a choice of lift of γ(0) produce

a lift γ̂ : I → P. By this process, we can transport (parallely even) data at

π−1(γ(0)) → π−1(γ(1)).

Definition 5.6. A(n Ehresmann) connection on a principalG-bundle is a choice

of G equivariant splitting of the preceding short exact sequence. We can

think of this as a map bundle map ω : TP → g×P which has ω(Xξ) = ξ and

ω(gv) = Adg−1(ω(v)).

The geometric interpretation of this is as a way to write TP ∼= g ⊕
π∗TB, v 7→ (ω(v), dπ(v)). A vector field Y on B induces a section of Ỹ of π∗TB

by Ỹ(p) = Y(π(p)). The image of π∗TB under the splitting, the Horizontal

distribution, will be denoted as H. Denote the composition TP → π∗TB→ TP

by h.The splitting allows us to realize Ỹ as a vector field Ŷ on P which is

π-related to Y (i.e. dπ(Ŷ(p)) = Y(π(b))) so that the flow of Ŷ (if it exists)

maps down to the flow of Y. The vector field Ŷ is called the horizontal lift

of Y as it is the unique horizontal vector field which is π related to Y. Since

ω is given by a map to the trivial vector bundle g× P, we can recast it as a

g-valued 1-form on P, i.e. ω ∈ Ω1(P, g).

Example 12. ARiemannianmetric g on a smoothmanifoldM is equivalently

a choice of smooth Euclidean structure on TM → M. As such, to any

Riemannian manifold there is an associated O(n) bundle of orthonormal

frames OFM := OFTM → M. The content of the fundamental theorem of

Riemannian geometry is that OFM admits a canonical choice of connection

with vanishing torsion. From this connection, we can specify a covariant

derivative using the yet-to-be-defined exterior covariant derivative.

Remark. We can extend the exterior derivative to any trivial vector bundle

in a natural way: Given α ∈ Ωk(P, V), choosing an isomorphism ϕ : V → Rn

means we can realize α as an element α ′ of Ωk(P,Rn) or as an n-tuple of

forms α ′
i := ((v1, . . . , vk) 7→ Φ(α(v1, . . . , vk))i) then dα := Φ−1(dα ′).
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Exercise 18. Show that the extension of d to Ωk(P, V) doesn’t depend on

our choice of Φ. Show that as a module over Ω∗(P), d defines a (super)-

derivation of degree 1 on Ω∗(P, V).

Proposition 5.7. Let P → B be a principal G-bundle. There exists a con-

nection on P.

Proof. Let (Uα, ϕα) be a system of local trivializations of P, with ψα : B→ R

a partition of unity with supp (ψα) ⊂ Uα. Define ωα ∈ Ω1(π−1(Uα), g) by

ωα := ϕ∗
αω̃α where ω̃α ∈ Ω1(G × Uα, g) is given by the differential of the

projection G×Uα → G.The form ωα is a connection form on π−1(Uα) since

ϕα is G equivariant. Define ω =
∑
π∗ψαωα. Then

ω(Xξ(p)) =
∑

ψα(π(p))ωα(Xξ)

=
(∑

ψα(π(p))
)

ξ = ξ

And

ω(gv) =
∑

ψα(π(gp))ωα(gv)

=
∑

ψα(π(p))Adg−1ωα(v)

= Adg−1

(∑
ψα(π(p))ωα(v)

)

= Adg−1ω(v)

Remark. The structure of the space of connections is rather simple. Given

two connectionsω,ω ′, their difference ω−ω ′ is an equivariant 1-form which

vanishes on the vertical distribution g× P.

Given a connection ω on a principal bundle P → B, we can try to imple-

ment parallel transport. Take γ : I→ B. We can pull P back by this map to

yield γ∗P → I. The pullback map yields γ∗P → P which we can pull ω back

by to yield a connection form γ∗ω on γ∗P. Let X be the horizontal lift of the

translational vector field ∂
∂t
. Equivariance of ω means that X is G invariant.

Proposition 5.8. The flow of X is defined for times [0, 1] and hence induces

a G equivariant map Pγ(0) → Pγ(1)
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Proof. Given p ∈ Pγ(0), the theory of ODE’s guarantees the existence of

an integral curve for X along p for times [0, ǫ). If γ̂ is such an integral

curve, then gγ̂ is the integral curve corresponding to gp since d
dtgγ̂(t) =

g d
dt
γ̂(t) = gX(γ(t)) so that the integral curve through gp exists for times

(−ǫ, ǫ) (choosing a suitable extension of γ : (−δ, 1 + δ)), ǫ < 1. This

means that the local flow yields a map Pγ(0) → Pγ(ǫ ′) for ǫ
′ < ǫ. There is a

continuous map I→ [0,∞) taking

s 7→ sup
t
{ the flow of X through Pγ(s) is defined for times (−t, t)}.

Since I is compact, and the flows all exist for some time, the image of this

map does not contain 0 and by a variation of the uniform time lemma [7]

Lemma 9.15, X has a flow for times [0, 1].

G equivariance is manifest as X is invariant.

Now, given a loop γ : I → B, starting and ending at b we have a map

Pb → Pb which must be given by multiplication by some element of G. It

is sensible to ask, how does this map depend on our choice of loop? In

particular, if γ : I → B is a contractible loop, is Pb → Pb necessarily the

identity? Assuming γ is an embedding, we can instead choose to deal with

global vector fields on B and their horizontal lifts. One could compute the

parallel transport by extending ∂
∂t

to a vector field on B and flowing its

horizontal lift. A new way to phrase our original question is, given X and Y

commuting vector fields, do the horizontal lifts of X and Y, X̂ and Ŷ commute?

or is the map X(B) → X(P) a Lie algebra homomorphism? The failure for the

horizontal lift map to be a Lie algebra homomorphism is naturally encoded

in Ω ′(X, Y) := 1
2
(([X, Y] − Xω([X,Y]) − [X, Y]) = −1

2
Xω([X,Y]) since X 7→ X̂ is a Lie

algebra homomorphism if and only if ω is identically 0.

Theorem 5.9. (Structure Equation) Let Ω ∈ Ω2(P, g) defined by

Ω(A,B) = dω(A,B) + [ω(A), ω(B)] = (dω+
1

2
[ω,ω])(A,B).

Then for any horizontal vector fields X and Y, we have

Ω(X, Y) = −
1

2
ω([X, Y]) = ω(Ω ′(X, Y)).
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Proof. Since X and Y are horizontal,

Ω(X, Y) = dω(X, Y) + [ω(X), ω(Y)]

=
1

2
(Xω(Y) − Yω(X) −ω([X, Y])) + 0

= −
1

2
ω([X, Y])

= ω(Ω ′(X, Y))

We can view a connection as a sort of universal covariant derivative on

vector bundles associated to P → B in the following way. Given a linear

representation ρ : G → GL(V), the associated bundle construction gives

rise to an equivalence between sections of E = P ×ρ V → B and equivariant

functions P→ V, and E-valued forms with equivariant V-valued forms which

vanish on the vertical distribution. Then, given an E-valued k-form η, with

corresponding form on P denoted η̃, we can take its exterior derivative dη̃.

Using our connection Dη̃ = dη̃◦h is an equivariant V-valued k+1 form on P

which vanishes on the vertical distribution and hence descends to a unique

E-valued k + 1 form dωη.

Exercise 19. Prove that dω : Ω∗(B, E) → Ω∗(B, E) is a degree +1 derivation

(viewing Ω∗(B, E) as a module over Ω∗(B)).

Because dω is equivariant, Ω pushes down to a P×Ad g valued 2-form on

B and hence we can take its covariant derivative. The following result tells

us that Ω is covariantly constant

Proposition 5.10. (Bianchi’s identity) The covariant exterior derivative of

Ω vanishes, i.e. dωΩ = 0

Proof. Since DΩ only depends on its values on H, we simply need to show

that dωΩp(u, v,w) = 0 for all u, v,w ∈ Tπ(p)B. Let X, Y, Z be extensions of
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u, v,w to horizontal vector fields on P. We then have:

(DΩ)p(u, v,w) = d

(

dω+
1

2
[ω,ω]

)

(X, Y, Z)|p

=
1

2
(d[ω,ω])(X, Y, Z)|p

= X[ω(Y), ω(Z)] − Y[ω(X), ω(Z)] + Z[ω(X), ω(Y)]

− [ω([X, Y]), ω(Z)] + [ω([X, Z]), ω(Y)] − [ω([Y, Z]), ω(X)]

Since ω(X) = ω(Y) = ω(Z) = 0 we see that each term in the preceding

expression vanishes identically.

5.3 Chern-Weil Theory

Let f : g×· · ·× g → R be an adjoint invariant symmetric k-multilinear map.

Adjoint invariance simply means Ad∗
gf = f. Given an equivariant g valued

l-form η on P which vanishes on the vertical distribution, f(η, η, . . . , η) gives

an invariant element of Ωkl(P,R) which vanishes on the vertical distribution.

As such it descends to a unique form β ∈ Ωkl(B,R) with π∗β = f(η, . . . , η).

We can apply this process to the curvature form of a connection Ω in order

to yield a well defined form f(Ω̄) ∈ Ω2k(B,R). The following proposition is

what allows us to obtain well defined cohomology classes:

Proposition 5.11. Let ω be a connection on π : P → B and f an adjoint

invariant symmetric k-multilinear map. The form f(Ω̄) ∈ Ω2k(B,R) is

closed and its cohomology class [f(Ω̄)] ∈ H2k(B,R) does not depend on

the choice of connection.

Proof. Since π∗df(Ω̄) = df(Ω), it suffices to prove that df(Ω) = 0. Invari-

ance and the fact that Ω vanishes on the vertical distribution mean that

df(Ω) = Df(Ω). Because Df(Ω) will be a polynomial in f(Ω) and DΩ, the

Bianci identity guarantees that Df(Ω) = 0.

A proof that f(Ω̄) does not depend on a choice of connection can be

found in [6] Vol II.

We can package this process into the Chern-Weil homomorphism, wP :

I(G) → H∗(B,R) where I(G) is the space of adjoint invariant polynomials
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on g. At this point, it is not clear that this process is related at all to the

characteristic classes of the first half of the course, however, the following

lemma gives some justification:

Proposition 5.12. The homomorphism wP is functorial with respect to pull-

backs of principal bundles, i.e. wF∗P = F∗ ◦wP for a map F : B ′ → B.

Proof. The pullback diagram

f∗P P

B ′ B

F̃

F∗π π

F

gives us a G-equivariant map F̃ : F∗P → P and hence TF̃ takes VF∗π to Vπ, so

F̃∗ω yields a connection on F∗P. Then F̃∗Ωω = ΩF̃∗ω and F∗f(Ω) = f(F̃∗Ω) =

f(ΩF̃∗ω).

We now turn our attention to the case of complex vector bundles. From

a Hermitian line bundle L → B, the bundle of frames is simply SL = {v ∈
L, ‖v‖2 = 1} → B, equipped with the multiplicative U(1) action. A connec-

tion on FL is simply a choice of invariant u(1) valued 1-form on SL. We

have U(1) and hence u(1) ∼= iR. Since U(1) is abelian, any polynomial is

invariant. The function f which maps iα to α
2π

will generate I(U(1)). This

class will correspond to the first Chern class.

A first calculation, to prove that our theory gives results that square with

our previous characteristic classes, would be a good idea now.

Proposition 5.13. For τ→ P(C2), wτ(f) = −[P(C2)] ∈ H2(P(C2),R)

Proof. By equipping C2 with the standard Hermitian form, and seeing that

Fτ = C
2\{0}, we have Sτ = S3 equipped with the inverse of the standard

U(1) action, (exp(iθ), z) 7→ exp(−iθ)z. With respect to the canonical trivi-

alization of TCk|S3, the U(1) action is generated by the vector field z 7→ −iz

(since exp(−it)z differentiates to −i exp(it)z). Because the standard inner

product on C2 ∼= R4 is given by Re(h) we have that TS3 = ker(〈−, z〉)|S3. An
Ehresmann connection on S3 → S2, can be gotten by taking the orthogonal
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compliment to the vertical bundle with respect to the standard inner prod-

uct, hence H = ker(Re(h(−, iz))|TS3. If σ → S3 is the subbundle of C2 × S3
written as {(λz1, λz2, z1, z2)|(z1, z2) ∈ S3, λ ∈ C}, then H = σ⊥. We can then

write our connection form as

ω = Re(h(−, iz)) = −i(y1dx1 − x1dy1 + y2dx2 − x2dy2).

Over the chart U1 of P(C2), we have a section of S3 → P(C2) given by

s : z 7→
(

z√
|z|2+1

, 1√
|z|2+1

)

. Under this section we have s∗ω = −iydx−xdy
x2+y2+1

so that Ω = ds∗ω = −2ir2dr∧dθ
(r2+1)2

in polar coordinates. Since Uc1 = {[1 : 0]},

integration over U1 will yield the value of the whole integral, and

〈c1(τ), [P(C2)]〉 =
∫

P(C2)

1

2πi
Ω =

1

2πi

∫

C

−
r2

(r2 + 1)2
dr∧ dθ = −1

as desired.

Exercise 20. Fill in the details of the preceding calculation.

Much of the following treatment comes from [6]. In order to link Chern-

Weil theory to our axiomatic treatments of the Euler and Chern classes,

we first have to define these classes in our theory. For Chern classes, we

will make use of the existence of a Hermitian metric, which makes every

complex vector bundle associated to a principal U(n) bundle. The theory

of polynomials tells us that invariant symmetric k-multilinear functions g×
. . .×g → R are the same as adjoint invariant degree k polynomials on g. For

λ ∈ R, consider the polynomial det(λI+ iX) = λn − f1(X)λn−1 + f2(X)λn−2 +

. . .+ (−1)nfn(X) for X ∈ u(n) (does this polynomial look familiar?)

Proposition 5.14. Each fi ∈ I(U(n)) and the collection {fi}i≤n generates

I(U(n)).

Exercise 21. Prove that fi ∈ I(U(n)) for 0 ≤ i ≤ n.
For a proof of the second fact, see [6]

Definition 5.15. Let E be a Hermitian vector bundle and FE its corresponding

bundle of unitary frames. We define the Chern-Weil theory Chern classes as

cChWei (E) = wFE(fi), and the total Chern class cChWe(E) = wFE(
∑1

i=0 fi).
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Remark. Let Tn = U(1)n and t its Lie algebra. The inclusion Tn → U(n) as

the diagonal matrices induces a map I(U(n)) → I(Tn) by pullback. The Lie

algebra t can be written as the diagonal imaginary matrices

t = {diag(ix1, . . . , ixn)|ai ∈ R}

and hence

det(λI+ idiag(ix1, . . . , ixn)) = det(λI− diag(x1, . . . , xn))

= det(diag(λ− x1, . . . , λ− xn))

=

n∏

i=1

(λ− xi).

This means that on the restriction to Tn each fi is given by the ith elementary

symmetric polynomial in xi.

The spectral theorem tells us that for h ∈ u(n) is diagonalizable by a

matrix in U(n) so h = UtU−1 for some t ∈ Tn and U ∈ U(n). As such, an

element of I(U(n)) only depends on the eigenvalues of h and fi(h) is the ith

symmetric polynomial in the eigenvalues of h.

Part of the power of Chern-Weil theory, is that it allows us to prove

identities about characteristic classes by doing matrix algebra.

Proposition 5.16. The Chern-Weil theory Chern class satisfies the product

formula, i.e. cChWe(E⊕ E ′) = cChWe(E)cChWe(E ′)
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