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2 Introduction to Vector Bundles

2.1 Why Vector Bundles?

Proposition 2.1. If M → N is an embedded closed submanifold of middle

dimension, the self intersection of M in N is equal to that of M in NM/N.

Exercise 1. Prove proposition 1.2.

2.2 Formal Definitions and Operations on Vector bundles

Exercise 2. Let E → B be a vector bundle. Prove that for each p ∈ B,

π−1(B) carries a natural vector space structure, and is isomorphic to K
k.

Example 1. The tangent bundle TM → M to a smooth manifold Mn is a

prototypical example of a vector bundle.

Exercise 3. Prove, using your favorite definition of the tangent bundle, that

TM → M is a vector bundle.

Example 2. Consider the trivial line bundle over R, pr2 : R × R → R.

This admits a Z action by a(x, y) = ((−1)ax, y + a). Denote ρ : R → R/Z

and ρ ′ : R × R → (R × R)/Z the projection maps. Since the Z action on

R× R commutes with the projection pr2 : R× R → R, there is unique map

(R× R)/Z → R/Z making the following diagram commute:

R× R R

(R× R)/Z R/Z

pr2

ρ ′ ρ

π

The quotient π : (R×R)/Z → R/Z admits a vector bundle structure. Think-

ing more geometrically, one can picture a fundamental domain of R×R as a

strip R× [0, 1] and the identification is gotten by identifying R×0 with R×1

via (x, 0) 7→ (−x, 1). This yields the classic picture of the Möbius strip!

Exercise 4. Prove that (R× R)/Z → R/Z is a vector bundle.
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Exercise 5. Show that the maps E ⊕ E ′ → E and E ⊕ E ′ → E ′ are bundle

morphisms, and that there are two short exact sequences of vector bundles

(i.e. diagrams of vector bundles which are exact on fibers):

0 → E → E⊕ E ′ → E ′ → 0

0 → E ′ → E⊕ E ′ → E → 0

Remark. In general, a short exact sequence of vector bundles would be writ-

ten as

0 → E → F → E ′ → 0.

The preceding example is called a split short exact sequence as here we

can write F ∼= E ⊕ E ′ with a map which respects the inclusion E → F and

projection F → E ′. In the appropriate topological and smooth categories, i.e.

where we consider vector bundles with continuous or smooth transition maps

and morphisms (defined over the correct domain of course), every short exact

sequence is split due to the existence of Euclidean and Hermitian metrics,

over K = R and K = C respectively. This is not the case in places like

complex geometry, where splittings in the smooth category almost never

respect the holomorphic structure.

Another way of yielding new vector bundles from old is that of the pull-

back bundle. Given π : E → B a vector bundle over B and f : B ′ → B, as a

topological space we can form the pullback square:

f∗E E

B ′ B

f∗π π

f

The space f∗E = {(v, b) ∈ E × B ′ : f(v) = π(b)} so that the projection

f∗E → B ′ is given by the restriction of E×B ′ → B ′ and the fiber f∗Eb ′ = Ef(b);

this is the most natural operation to do, we just associate to each point in

the domain of f the fiber of the point that f takes it to.

Exercise 6. Prove that f∗E is a vector bundle over B ′.

To a pair of vector bundles E and E ′, we can define Hom(E, E ′) as the

total space of a vector bundle with fiber Hom(E, E ′)p := Hom(Ep, E
′
p).
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Exercise 7. Prove that Hom(E, E ′) is a vector bundle, and the space of vector

bundle homomorphisms E → E ′ is naturally isomorphic (as a vector space)

to the space of sections of Hom(E, E ′).
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3 Oriented Vector Bundles and the Euler Class

3.1 Euclidean and Oriented Vector bundles

Exercise 8. Prove that a real line bundle is trivial if and only if it is ori-

entable.

3.3 Axiomatics of the Euler Class

Exercise 9. Prove that there is a one to one correspondence between char-

acteristic classes, i.e. an assignment of k(E) ∈ H∗(B) for every isomorphism

class of K-vector bundles E → B which is natural k(f∗E) = f∗k(E) ∈ H∗(B ′)

for every map f : B ′ → B, and natural transformations between the VectK

functor and the cohomology functor H∗(−).

4 Complex Vector Bundles and Chern Classes

4.1 Hermitian Vector Bundles

Exercise 10. Prove that for any B a paracompact space, and E → B a

complex vector bundle, E admits a hermitian structure.

4.4 The Splitting Principle

The aim of this problem session is a loosely guided proof of Theorem 4.7.

Much of the coverage is inspired by the approach of Bott & Tu. There are

several different proofs, with varying levels of concreteness and constructive-

ness. Our proof will focus on the method of the splitting principle, a method

which generalizes in a particularly nice way to the algebraogeometric setting.

The basic idea is as follows:

i) Given a complex vector bundle p : E → B construct a space (in reality

a fibration) π : S → B such that π∗E ∼=
⊕

i≤rk(E) Li where each Li is a

line bundle over S.
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ii) We then wish to prove that the induced map on cohomology π∗ :

H∗(B,Z) → H∗(S,Z) is injective.

iii) Then we can produce the Chern class by forcing the product formula

to hold, i.e. define c(E) so that π∗c(E) =
∏

i(1+ c1(Li)).

iv) Then prove well definedness.

Before we delve into the splitting principle, we need to recall the structure

of the cohomology of P(Ck). Given V → Ck a k − 1 dimensional subspace,

the image of V\{0} under the quotient map Ck\{0} → P(Ck), denoted by

P(V) is homeomorphic to a copy of P(Ck−1). The complement P(V)c is

homeomorphic to Ck−1. Thinking of P(C2) as the one point compactification

of C, i.e. the CW complex obtained by attaching a 2-cell to ∗, we can use this
process to inductively put a cell structure on P(Ck), by attaching a 2k − 2

cell to P(Ck−1). As such the cellular homology cochain complex for P(Ck) is

0 → Z → 0 → Z → . . . → 0 → Z → 0

where the non-zero groups are in grading 2i for 2k−2 ≥ 2i ≥ 0. Since the dif-

ferentials are all 0, we can write the cohomology of P(Ck) as H∗(P(Ck),Z) ∼=

Z[c1]/c
2k
1 where c1 = c1(τ) is placed as the generator in degree 2. Infact, this

isomorphism respects the ring structure.

Proposition 4.1. Let p : E → B be a complex vector bundle. There exists

π : S → B such that π∗E ∼=
⊕

i Li and π∗ is injective on cohomology.

Proof. Let π : E → B be a complex vector bundle. Define P(E) to be the

fiber bundle with P(E)p = P(Ep). We can see that this is a fiber bundle over

B by projectivizing the transition functions coming from a system of local

trivializations of E → B. Each of the fibers of P(E) carry the tautological

line bundle τ → P(Ep) and the these glue together to give a line bundle

τ(E) → P(E). This yields the following short exact sequence of vector bundles

0 → τ(E) → π∗
1E → π∗

1E/τ(E) → 0.

Introducing a hermitian metric allows us to split this short exact sequence

(WARNING: in the algebraic category not all short exact sequences of vector
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bundles split, and in fact a weaker version of axiom a is used, that any short

exact sequence of vector bundles 0 → E ′ → E → E ′′ → 0 has c(E) =

c(E ′) ∪ c(E ′′))

Splitting this sequence allows us to write π∗
1E

∼= τ(E) ⊕ π∗E/τ(E), now

having split π∗E into a sum of τ(E) and π∗E/τ(E) we can apply the process

inductively to produce S → B for which π∗E ∼=
⊕

Li. Denote our repeated

projectivization π : XE → B

Exercise 11. Describe the fiber of this repeated process of projectivization

as a quotient of some Lie group by one of its subgroups.

In order to show that the projection is injective on cohomology we may

apply the following theorem:

Theorem 4.2. (Leray-Hirsch) Let X → B be a fiber bundle with fiber i : F →

X such that H∗(F,Z) is a free abelian group and i∗ : H∗(X,Z) → H∗(F,Z)

is surjective. Then there exists an isomorphism L : H∗(B,Z)⊗H∗(F,Z) →

H∗(X,Z) such that the following diagram commutes

H∗(B,Z)⊗H∗(F,Z) H∗(X,Z)

H∗(B,Z)

L

f
π∗

where f(b) = b⊗ 1.

So, if we can prove the hypotheses of Theorem 4.2 then the injectivity

of f implies the injectivity of π∗. Proving these hypotheses can be rather

tedious and uninstructive, so for the sake of brevity we will work in the case

where a system of local trivializations has only two elements U,V ⊂ B.

Proposition 4.3. The cohomology of F, H∗(F,Z) is a free abelian group.

Proof. Since each level is gotten by projectivizing the quotient of the previ-

ous bundle, it suffices to prove the following:

Lemma 4.4. Let E → B be a complex vector bundle. Then the cohomol-

ogy of P(E) is a freely generated module over H∗(B,Z), generated by

1, x, x2, . . . , xrkE−1 where x ∈ H2(P(E),Z) with ι∗x = c1(τ).
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Proof. Let ι : P(Ck) → P(E) denote the inclusion of a fiber. Naturality of

c1(τ) tells us that since ι∗τE = τ that ι∗c1(τE) = c1(τ). Since H∗(P(Ck),Z) →

H∗(P(E),Z) is a ring homomorphism, and H∗(P(Ck),Z) ∼= Z[c1]/c
k
1, ι∗ is

necessarily surjective and the Leray-Hirsch theorem applies.

Definition 4.5. Since H∗(P(E),Z) is a free module over H∗(B,Z), generated by

1, x, x2, . . . , xrkE−1 The equation

xk =

k−1∑

i=1

aix
i

has a unique solution for some ai = π∗bi. We define the ith Chern class as

ci(E) = −bk−i.

We can think of this idea as telling us that the cohomology of P(E) is

additively H∗(M,Z)⊗H∗(P(Ck)), and the Chern classes measure the overall

twisting of the ring structure on the cohomology. This gives a presentation

of H∗(P(E),Z) ∼= H∗(B,Z)[x]/(
∑rkE

i=1 ci(E)x
rkE−i).

Exercise 12. Using the previous ideas, write a presentation for the ring

structure cohomology of P(E/τ) as a quotient of H∗(B,Z)[x1, x2].

Exercise 13. Set B = U∪V and p−1(U) ∼= F×U, p−1(V) ∼= F×V. Using the

Mayer Vietoris sequence for E = p−1(U)∪p−1(V), and the Künneth formula,

prove that for x ∈ U ∩ V, i∗ : H∗(F,Z) → H∗(X,Z) is surjective.

Proceeding by induction, the preceding work tells us that as a ring

H∗(X,Z) ∼= H∗(B,Z)[x1, . . . , xrkE]/I for some ideal I ⊂ H∗(X,Z)[x1, . . . , xrkE].

We have a submersion Λj : X → P(E) which sends the point L1 ⊕ . . . Lk to

[Lj]. Since Λ∗
j τ = Lj, Λ

∗
j x = c1(Lj) = xj and hence c1(Lj) satisfies

k∑

i=1

xijcrkE−i(E) = 0

for every j. The theory of symmetric polynomials tells us that

ci(E) = (−1)iσi(x1, . . . , xrkE)
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for σi the ith elementary symmetric polynomial

σi(x1, . . . , xrkE) =
∑

I⊂[rkE],|I|=i

xI

so that
∑

ci(E) =
∑

σi(x1, . . . , xrkE) =
∏k

j=1(1 + xj) =
∏k

j=1(1 + c1(Lj)) so

that our definitions coincide.

Exercise 14. Prove the product formula c(E ⊕ E ′) = c(E)c(E ′) using the

splitting principle.

Exercise 15. For L a complex line bunlde and E rank 2 complex vector

bundle, find a formula for c(L⊗ E ′).
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5 Principal Bundles, Connections, and Curvature

5.1 Principal Bundles

Example 3. The associated bundle construction allows us to obtain all of the

bundles related to a given principal G bundle by studying its representation

theory. Given π : E → B a vector bundle and FE → B its bundle of frames,

we can form the dual vector bundle E∗ = Hom(E,K) by taking the bundle

associated to the dual representation of GLn(K). More concretely, the action

of GLn(K) on Kn, (g, v) 7→ gv dualizes, to yield an action of GLn(K) on (Kn)∗

by (g, α) 7→ (v 7→ α(gv)). This action is a right action, so we precompose by

the inverse map to yield a left action. Then E∗ ∼= (FE× (Kn)∗)/GLn(K). For

each b ∈ B we have a natural evaluation map FEb ×Kn × (Kn)∗ → FEb ×K,

given by (p, v, α) 7→ (p, α(v)). This extends to a map (FE×Kn)×π(FE×Kn) →

FE × K which is GLn(K) equivariant (the action on K being trivial) since

g(p, v, α) = (gp, g−1v, α ◦ g) 7→ (gp, α(gg−1v)) = (gp, α(v)). Equivariance

means this descends to a map E ×π (FE ×ρ (K
n)∗) → B × K. This map is

bilinear and therefore gives ev : FE×ρ K
n → Hom(E,K)

Remark. The associated bundle P×ρF should not be confused with a fibered

product. The notation P×ρ F is less than optimal, but it is rather compact.

Exercise 16. Prove that ev is an isomorphism.

5.2 Connections on Principal Bundles

Remark. We can extend the exterior derivative to any trivial vector bundle

in a natural way: Given α ∈ Ωk(P, V), choosing isomorphism ϕ : V → Rn

means we can realize α as an element α ′ of Ωk(P,Rn) or as an n-tuple of

forms α ′
i := ((v1, . . . , vk) 7→ Φ(α(v1, . . . , vk))i) then dα := Φ−1(dα ′).

Exercise 17. Show that the extension of d to Ωk(P, V) doesn’t depend on

our choice of Φ. Show that as a module over Ω∗(P), d defines a (super)-

derivation of degree 1 on Ω∗(P, V).

We can view a connection as a sort of universal covariant derivative on

vector bundles associated to P → B in the following way. Given a linear
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representation ρ : G → GL(V), the associated bundle construction gives

rise to an equivalence between sections of E = P ×ρ V → B and equivariant

functions P → V, and E-valued forms with equivariant V-valued forms which

vanish on the vertical distribution. Then, given an E-valued k-form η, with

corresponding form on P denoted η̃, we can take its exterior derivative dη̃.

Using our connection Dη̃ = dη̃◦h is an equivariant V-valued k+1 form on P

which vanishes on the vertical distribution and hence descends to a unique

E-valued k + 1 form dωη.

Exercise 18. Prove that dω : Ω∗(B, E) → Ω∗(B, E) is a degree +1 derivation

(viewing Ω∗(B, E) as a module over Ω∗(B)).

5.3 Chern-Weil Theory

Proposition 5.1. For τ → P(C2), wτ(f) = −[P(C2)] ∈ H2(P(C2),R)

Proof. By equipping C
2 with the standard hermitian form, and seeing that

Fτ = C2\{0}, we have Sτ = S3 equipped with the inverse of the standard

U(1) action, (exp(iθ), z) 7→ exp(−iθ)z. With respect to the canonical trivi-

alization of TCk|S3, the U(1) action is generated by the vector field z 7→ −iz

(since exp(−it)z differentiates to −i exp(it)z). Because the standard inner

product on C2 ∼= R4 is given by Re(h) we have that TS3 = ker(〈−, z〉)|S3. An
Ehresmann connection on S3 → S2, can be gotten by taking the orthogonal

compliment to the vertical bundle with respect to the standard inner prod-

uct, hence H = ker(Re(h(−, iz))|TS3. If σ → S3 is the subbundle of C2 × S3

written as {(λz1, λz2, z1, z2)|(z1, z2) ∈ S3, λ ∈ C}, then H = σ⊥. We can then

write our connection form as

ω = Re(h(−, iz)) = −i(y1dx1 − x1dy1 + y2dx2 − x2dy2).

Over the chart U1 of P(C2), we have a section of S3 → P(C2) given by

s : z 7→
(

z√
|z|2+1

, 1√
|z|2+1

)

. Under this section we have s∗ω = −iydx−xdy
x2+y2+1

so that Ω = ds∗ω = −2ir2dr∧dθ
(r2+1)2

in polar coordinates. Since Uc
1 = {[1 : 0]},

integration over U1 will yield the value of the whole integral, and

〈c1(τ), [P(C2)]〉 =
∫

P(C2)

1

2πi
Ω =

1

2πi

∫

C

−
r2

(r2 + 1)2
dr∧ dθ = −1
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as desired.

Exercise 19. Fill in the details of the preceding calculation.

For Chern classes, we will make use of the existence of a hermitian metric,

which makes every complex vector bundle associated to a principal U(n)

bundle. The theory of polynomials tells us that invariant symmetric k-

multilinear functions g× . . .×g → R are the same as adjoint invariant degree

k polynomials on g. For λ ∈ R, consider the polynomial det(λI+ iX) = λn−

f1(X)λ
n−1 + f2(X)λ

n−2 + . . .+ (−1)nfn(X) for X ∈ u(n) (does this polynomial

look familiar?)

Proposition 5.2. Each fi ∈ I(U(n)) and the collection {fi}i≤n generates

I(U(n)).

Exercise 20. Prove that fi ∈ I(U(n)) for 0 ≤ i ≤ n.

For a proof of the second fact, see Kobayashi-Nomizu Vol II.

Part of the power of Chern-Weil theory, is that it allows us to prove

identities about characteristic classes by doing matrix algebra.

Proposition 5.3. The Chern-Weil theory Chern class satisfies the product

formula, i.e. cChWe(E⊕ E ′) = cChWe(E)cChWe(E ′)

Exercise 21. Prove Proposition 5.3
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