Preliminary Exam in Algebra-Fall Semester

August 2011

Do three of the following five problems.

Question 1. (a) Let G be a group of order 12. Prove that either the Sylow 2-subgroup or Sylow 3-subgroup of G is normal. (b) Show that a group G of order 12 with no subgroup of order 6 is isomorphic to A_4 . (If needed you may assume without proof that $Aut(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}) \cong S_3$)

Question 2. Let R be a commutative ring with identity. The Jacobson Radical of R, denoted \mathcal{J} is the intersection of all maximal ideals in R. (a) Compute the Jacobson Radical of the ring $\mathbb{Z}/30\mathbb{Z}$. (b) Show that $x \in \mathcal{J}$ if and only if 1 - xy is a unit in R for all $y \in R$.

Question 3. Show that for G a finite abelian group, any irreducible n-dimensional complex representation is one-dimensional.

Question 4. Let R be a commutative ring with 1. If $a \in R$, write $Ann(a) = \{r \in R : ar = 0\}$, an ideal of R. Let $S \subset R$ be the set of $a \in R$ with Ann(a) a prime ideal. (a) If R is Noetherian, show that S is nonempty. (b) If $a \in S$ and $r \in R$, show that either ar = 0 or $ar \in S$. (c) If $a, b \in S$ and $Ann(a) \neq Ann(b)$, show that ab = 0.

Question 5. Let G be a group and $K \subset H$ subgroups with K normal in H. (a) Prove that H normalizes the centralizer $Z_G(K)$. (b) If H is normal in G and $Z_H(K) = 1$, prove that H centralizes $Z_G(K)$.