Preliminary Exam in Algebra-Fall Semester

August 2011

Do three of the following five problems.
Question 1. (a) Let G be a group of order 12. Prove that either the Sylow 2-subgroup or Sylow 3-subgroup of G is normal. (b) Show that a group G of order 12 with no subgroup of order 6 is isomorphic to A_{4}. (If needed you may assume without proof that Aut $(\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}) \cong S_{3}$)

Question 2. Let R be a commutative ring with identity. The Jacobson Radical of R, denoted \mathcal{J} is the intersection of all maximal ideals in R. (a) Compute the Jacobson Radical of the ring $\mathbf{Z} / 30 \mathbf{Z}$.
(b) Show that $x \in \mathcal{J}$ if and only if $1-x y$ is a unit in R for all $y \in R$.

Question 3. Show that for G a finite abelian group, any irreducible n-dimensional complex representation is one-dimensional.

Question 4. Let R be a commutative ring with 1. If $a \in R$, write Ann $(a)=\{r \in R: a r=0\}$, an ideal of R. Let $S \subset R$ be the set of $a \in R$ with Ann(a) a prime ideal. (a) If R is Noetherian, show that S is nonempty. (b) If $a \in S$ and $r \in R$, show that either ar $=0$ or $a r \in S$. (c) If $a, b \in S$ and $\operatorname{Ann}(a) \neq \operatorname{Ann}(b)$, show that $a b=0$.

Question 5. Let G be a group and $K \subset H$ subgroups with K normal in H. (a) Prove that H normalizes the centralizer $Z_{G}(K)$. (b) If H is normal in G and $Z_{H}(K)=1$, prove that H centralizes $Z_{G}(K)$.

