Preliminary Exam in Algebra-Spring Semester

August 2011

Do three of the following four problems.
Question 1. Prove that the $\sqrt[5]{7}$ does not lie in $\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{1}^{3}, \ldots, \alpha_{n}^{3} \in \mathbb{Q}$.
Question 2. Let p be a rational prime and $a \in \mathbb{F}_{p}^{*}$.
a) Prove that $x^{p}-x+a$ is irreducible and separable over \mathbb{F}_{p}.
b) Determine the number of elements of the splitting field of $x^{p}-x+a$ over \mathbb{F}_{p}.

Question 3. Let F be the splitting field over \mathbb{Q} of $x^{4}+x^{2}+1$.
a) Determine the degree of F / \mathbb{Q}.
b) Detemine the Galois group $\operatorname{Gal}(F / \mathbb{Q})$ as a subgroup of the permutation group of the roots of $x^{4}+x^{2}+1$.
c) Determine a primitive generator for all the intermediate fields of F / \mathbb{Q}

Question 4. Let p be a prime.
a) Prove that the Galois group of $x^{p}-2$ is isomorphic to the group of matrices $\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right)$ where $a, b \in \mathbb{F}_{p}$ and $a \neq 0$.
b) Prove that $\mathbb{Q}(\sqrt[p]{2})$ is not a subfield of any cyclotomic extension of \mathbb{Q} for any odd prime p.

