PRELIMINARY EXAMINATION IN ANALYSIS Part I, Real Analysis August 15, 2011

- **1.** For $\frac{1}{p} + \frac{1}{q} = 1$, let $S = \{f \in L^p(\mathbb{R}) : \operatorname{support}(f) \subset [-1, 1], \text{ and } ||f||_{L^p} \leq 1\}$, and let g be a fixed but arbitrary function in $L^q(\mathbb{R})$, with $\operatorname{support}(g) \subset [-1, 1]$. Show that the image of S under the map $f \mapsto f * g$ is a compact set in $C^0([-2, 2])$.
- **2.** Let f_1, f_2, f_3, \ldots be nonnegative Lebesgue-integrable functions on \mathbb{R}^n , such that

$$\sum_{k=1}^{\infty} \int (f_k - f_{k-1})^+ < \infty, \qquad \lim_{k \to \infty} \int f_k = 0$$

Show that $\limsup_{k \to \infty} f_k \equiv 0$ almost everywhere.

- **3.** Let $1 and <math>f(x) = |x|^{-n/p}$ for $x \in \mathbb{R}^n$. Prove that f is <u>not</u> the limit of a sequence $f_k \in C_0^{\infty}(\mathbb{R}^n)$ in the sense of convergence in $L^p_{\text{weak}}(\mathbb{R}^n)$. $\Big(\text{That is, } \limsup_{k \to \infty} (\sup_{\lambda > 0} \lambda^p | \{x \in \mathbb{R}^n : |f(x) - f_k(x)| > \lambda\} | \Big) > 0 \text{ for any such sequence.} \Big)$
- 4. Let μ be a Borel measure on [0, 1]. Assume that
 - a) μ and Lebesgue measure are mutually singular.
 - b) $\mu([0,t])$ depends continuously on t.
 - c) For any function $f: [0,1] \to \mathbb{R}$, if $f \in L^1$ (Lebesgue) then $f \in L^1(\mu)$. (Note that f has a finite value at every point.)

Show that $\mu \equiv 0$.