Name and UID:

Applied Math Prelim

August 17, 2011
Part I

1. Let X, Y, and Z be NLS's and $T: X \times Y \rightarrow Z$ a bilinear map.
(a) Prove that the following are equivalent.
(i) T is continuous;
(ii) T is continuous at $(0,0)$;
(iii) T is bounded, meaning that there is some $M \geq 0$ such that

$$
\|T(x, y)\|_{Z} \leq M\|x\|_{X}\|y\|_{Y} \quad \forall x \in X, y \in Y .
$$

(b) Show that the minimal M above gives a norm on the set of continuous bilinear maps. That is, $\|\cdot\|$ is a norm, where

$$
\|T\|=\sup _{x \in X, y \in Y} \frac{\|T(x, y)\|_{Z}}{\|x\|_{X}\|y\|_{Y}} .
$$

2. Let H be a nontrivial Hilbert space. Let $P: H \rightarrow M$ be a linear projection operator, and let $Q: H \rightarrow N$ be an orthogonal projection operator. Assume that M and N are neither $\{0\}$ nor H.
(a) Prove that $\|P\| \geq 1$.
(b) Prove that $\|P\|=1$ if and only if P is an orthogonal projection.
(c) Suppose now that P is an orthogonal projection, and also that $P Q=Q P$. Show that $P Q$ is an orthogonal projection onto $M \cap N$.
3. Let $K: L^{2}(0,1) \rightarrow L^{2}(0,1)$ be the integral operator defined as

$$
K u(x)=\int_{0}^{1} e^{x-y} u(y) d y .
$$

(a) Find the range of K. Is the range of K closed? Is K a compact operator?
(b) Compute the adjoint operator K^{*}, and find its kernel.
(c) Verify explicitly that $K u=f$ is solvable if and only if $f \perp$ Ker K^{*}.

Name and UID:

Applied Math Prelim

August 17, 2011

Part II

Choose any 3 of the 4 following problems.

4. For $\varphi \in C^{0}\left(\mathbb{R}^{d}\right)$, let the restriction map $R: C^{0}\left(\mathbb{R}^{d}\right) \rightarrow C^{0}\left(\mathbb{R}^{d-k}\right)$ be defined by $R \varphi\left(x^{\prime}\right)=\varphi\left(x^{\prime}, 0\right), \forall x^{\prime} \in \mathbb{R}^{d-k}$ and $0 \in \mathbb{R}^{k}$, for $0<k<d$, with k an integer number.

Show that the restriction map R extends to a bounded linear map from $H^{s}\left(\mathbb{R}^{d}\right)$ onto $H^{s-k / 2}\left(\mathbb{R}^{d-k}\right)$, provided that $s>k / 2$.

Hint: Show this result first for the restriction of functions in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ using the Sobolev norms involving the Fourier representation.
5. Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain with a Lipschitz boundary, $f \in L^{2}(\Omega)$ and $\alpha>0$. Consider the Robin boundary value problem in Ω,

$$
\left\{\begin{array}{lc}
-\Delta u+u=f & \text { in } \Omega \\
\frac{\partial u}{\partial \nu}+\alpha u=0 & \text { on } \partial \Omega .
\end{array}\right.
$$

(a) For this problem, formulate a variational principle $B(u, v)=(f, v), \forall v \in H^{1}(\Omega)$.
(b) Show that this problem has a unique weak solution.
6. Set up and apply the contraction mapping principle to show that the boundary value problem $(\varepsilon>0)$:

$$
\left\{\begin{array}{l}
-u_{x x}+u-\varepsilon u^{2}=f(x), x \in(0,+\infty), \\
u(0)=1, \quad \lim _{x \rightarrow+\infty} u(x)=0,
\end{array}\right.
$$

where $f(x)$ is a smooth compactly supported function on $(0,+\infty)$, has a unique smooth solution if ε is small enough.
7. Show that for $y \in \mathbb{R}^{2}$ fixed, $\frac{1}{2 \pi} \ln |x-y|$ is locally integrable in \mathbb{R}^{2}, i.e. it is a function in $L_{1, l o c}\left(\mathbb{R}^{2}\right)$; and that it is a fundamental solution of $\Delta u=\delta_{y}$, where $\Delta=\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}$ is the Laplace operator.

