Numerical Analysis Exam: Part A, August 2011

1. Let $f(x)$ be a smooth function.
(a) Write down the Newton's method for root finding.
(b) Assume that $f(\xi)=f^{\prime}(\xi)=f^{\prime \prime}(\xi)=0$. If $\left(x_{k}\right)$ is a sequence obtained by Newton's method, prove that

$$
\xi-x_{k+1}=\left(\xi-x_{k}\right)\left(1-\frac{1}{3} \frac{f^{\prime \prime \prime}\left(\alpha_{k}\right)}{f^{\prime \prime \prime}\left(\beta_{k}\right)}\right)
$$

where α_{k} and β_{k} lie between ξ and x_{k}.
(c) Suppose $0<m<\left|f^{\prime \prime \prime}(x)\right|<M$ in a neighborhood $[\xi-\eta, \xi+\eta]$ for $\eta>0$. Find a condition on m and M under which the Newton method converges for any initial condition from $[\xi-\eta, \xi+\eta]$. State the convergence rate.
2. Suppose that A is a matrix of size $m \times n$ with $m>n$.
(a) Show how to solve the least square problem

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|A x-b\|^{2}
$$

using the QR decomposition and the singular value decomposition (SVD), respectively. Notice that the rank of A may be smaller than n.
(b) Show how to solve the regularized problem

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|A x-b\|^{2}+\frac{1}{2} \alpha\|x\|^{2}
$$

with $\alpha>0$ using the singular value decomposition (SVD).
3. Suppose that $P_{1}(x), \ldots, P_{n}(x)$ are n linear independent functions on a domain Ω.
(a) Suppose that $\left(x_{j}, u_{j}\right)$ for $j=1,2, \ldots, n$ are given for $\left\{x_{j}\right\}$ different. What is the linear system for finding $u(x) \in \operatorname{span}\left\{P_{1}(x), \ldots, P_{n}(x)\right\}$ that interpolates $\left(x_{j}, u_{j}\right)$, i.e., $u\left(x_{j}\right)=u_{j}$.
(b) Suppose that $g(x)$ is a function defined on Ω. What is the linear system for finding $u(x) \in \operatorname{span}\left\{P_{1}(x), \ldots, P_{n}(x)\right\}$ that solves

$$
\min _{u} \frac{1}{2} \int_{\Omega}|g(x)-u(x)|^{2} d x .
$$

(c) Assume that Ω is the periodic interval $[0,1], x_{j}=(j-1) / n$ for $j=1, \ldots, n$, and $\left\{P_{i}(x), i=1, \ldots, n\right\}=\left\{e^{2 \pi \sqrt{-1} k x}, k=-m, \ldots, m\right\}$ where $n=2 m+1$. Write down explicitly the linear system of the previous two questions.
(d) How to solve these two problems efficiently in $O(n \log n)$ steps? [Hint: Use trapezoidal rule (for quadrature) and FFT.]

