PRELIMINARY EXAMINATION: NUMERICAL ANALYSIS II

August 17, 2011, 2:40-4:10
Work all 3 of the following 3 problems.

1. Consider the system of two ordinary differential equations

$$
u^{\prime}(t)=f(v) \quad \text { and } \quad v^{\prime}(t)=g(u)
$$

where $u(0)=u_{0}$ and $v(0)=v_{0}$, and, for $h>0$, the numerical scheme

$$
U^{n+1}=U^{n}+h f\left(V^{n}+\frac{h}{2} g\left(U^{n}\right)\right) \quad \text { and } \quad V^{n+1}=V^{n}+h g\left(\frac{1}{2}\left(U^{n}+U^{n+1}\right)\right)
$$

(a) Show that the local truncation error for both u and v is $\mathcal{O}\left(h^{2}\right)$.
(b) For the linear system where $f(v)=\lambda v$ and $g(u)=-\mu u$, both λ and μ being positive, show that when $h \lambda<1$ and $h \mu<1$, the scheme is stable. [Hint: The eigenvalues of the matrix $\left(\begin{array}{ll}a & b \\ c & a\end{array}\right)$ are $\left.a \pm \sqrt{b c}.\right]$
2. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with a polygonal boundary. Consider the elliptic partial differential equation for $u(x)$ given by

$$
\begin{aligned}
-a \Delta u+c u=f & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,
\end{aligned}
$$

where $a(x)$ and $c(x)$ satisfy $0<a_{*} \leq a(x) \leq a^{*}<\infty, 0 \leq c(x) \leq a^{*}<\infty$, and also $|\nabla a(x)| \leq b^{*}<$ ∞. Assume that $f \in L^{2}(\Omega)$.
(a) Find a variational form suitable for approximation by finite elements.
(b) Give a reasonable condition on b^{*} that insures that your bilinear form is coercive.
(c) Derive a bound on the error between u and a finite element approximation u_{h}.
3. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with a polygonal boundary. Consider the parabolic partial differential equation

$$
\begin{array}{cl}
u_{t}-\Delta u=f(x, t) & \text { for } x \in \Omega, t>0 \\
u(x, t)=0 & \text { for } x \in \partial \Omega, t>0 \\
u(x, 0)=u_{0}(x) & \text { for } x \in \Omega, t=0
\end{array}
$$

It has the variational form

$$
\left(u_{t}, v\right)+(\nabla u, \nabla v)=(f, v) \quad \forall v \in H_{0}^{1}(\Omega) .
$$

(a) Write down the discrete scheme that uses a suitable finite element method in space and backward Euler in time.
(b) Show that your scheme is stable by bounding

$$
\max _{n}\left\|u^{n}\right\|^{2}+\sum_{n}\left\|\nabla u^{n}\right\|^{2} \Delta t
$$

in terms of $\left\|u_{0}\right\|$ and $\max _{t}\|f(\cdot, t)\|$.

