PRELIMINARY EXAMINATION: NUMERICAL ANALYSIS II

August 17, 2011, 2:40-4:10

Work all 3 of the following 3 problems.

1. Consider the system of two ordinary differential equations

$$u'(t) = f(v)$$
 and $v'(t) = g(u)$,

where $u(0) = u_0$ and $v(0) = v_0$, and, for h > 0, the numerical scheme

$$U^{n+1} = U^n + h f\left(V^n + \frac{h}{2}g(U^n)\right) \text{ and } V^{n+1} = V^n + h g\left(\frac{1}{2}(U^n + U^{n+1})\right).$$

(a) Show that the local truncation error for both u and v is $\mathcal{O}(h^2)$.

(b) For the linear system where $f(v) = \lambda v$ and $g(u) = -\mu u$, both λ and μ being positive, show that when $h\lambda < 1$ and $h\mu < 1$, the scheme is stable. [Hint: The eigenvalues of the matrix $\begin{pmatrix} a & b \\ c & a \end{pmatrix}$ are $a \pm \sqrt{bc}$.]

2. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with a polygonal boundary. Consider the elliptic partial differential equation for u(x) given by

$$-a\Delta u + cu = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega$$

where a(x) and c(x) satisfy $0 < a_* \le a(x) \le a^* < \infty$, $0 \le c(x) \le a^* < \infty$, and also $|\nabla a(x)| \le b^* < \infty$. Assume that $f \in L^2(\Omega)$.

(a) Find a variational form suitable for approximation by finite elements.

- (b) Give a reasonable condition on b^* that insures that your bilinear form is coercive.
- (c) Derive a bound on the error between u and a finite element approximation u_h .

3. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with a polygonal boundary. Consider the parabolic partial differential equation

$$u_t - \Delta u = f(x, t) \quad \text{for } x \in \Omega, \ t > 0,$$

$$u(x, t) = 0 \qquad \text{for } x \in \partial\Omega, \ t > 0,$$

$$u(x, 0) = u_0(x) \qquad \text{for } x \in \Omega, \ t = 0.$$

It has the variational form

$$(u_t, v) + (\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega).$$

(a) Write down the discrete scheme that uses a suitable finite element method in space and backward Euler in time.

(b) Show that your scheme is stable by bounding

$$\max_{n} \|u^n\|^2 + \sum_{n} \|\nabla u^n\|^2 \,\Delta t$$

in terms of $||u_0||$ and $\max_t ||f(\cdot, t)||$.