The University of Texas at Austin
 Department of Mathematics

The Preliminary Examination in Probability Part I

Aug 2011

Problem $1(36 \mathrm{pts})$. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of random variables bounded in \mathcal{L}^{1}. We say that $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ converges to a random variable $X \in \mathcal{L}^{1}$ in the biting sense if, for each $\varepsilon>0$, there exists $A_{\varepsilon} \in \mathcal{F}$ such that $\mathbb{P}\left[A_{\varepsilon}\right]>1-\varepsilon$ and $X_{n} \mathbf{1}_{A_{\varepsilon}} \rightarrow X \mathbf{1}_{A_{\varepsilon}}$ in \mathcal{L}^{1}.
(1) Show that the biting limit X of the sequence $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a.s.-unique (provided it exists).
(2) Show that convergence in \mathcal{L}^{1} implies the biting convergence, but that the biting convergence does not necessarily imply convergence in \mathcal{L}^{1}.
(3) Show that he two concepts coincide for uniformly integrable sequences $\left\{X_{n}\right\}_{n \in \mathbb{N}}$.

Problem 2 (32pts). Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of random variables such that $\mathbb{P}\left[X_{n} \in \mathbb{N}_{0}\right]=1$, for all $n \in \mathbb{N}$; here $\mathbb{N}_{0}=\{0,1,2, \ldots\}$. Show that for a random variable X with $\mathbb{P}\left[X \in \mathbb{N}_{0}\right]=1$, the following are equivalent
(1) $X_{n} \rightarrow X$ in distribution,
(2) $\mathbb{P}\left[X_{n}=k\right] \rightarrow \mathbb{P}[X=k]$, for all $k \in \mathbb{N}_{0}$.
(3) $g_{X_{n}}(t) \rightarrow g_{X}(t)$ for all $t \in[0,1)$, where, for any Y, we define $g_{Y}(t)=\sum_{k \in \mathbb{N}_{0}} \mathbb{P}[Y=k] t^{k}$.
(Hint: For $(3) \Rightarrow(1)$, use the ideas from the proof of the Continuity Theorem for weak convergence. To deal with tightness, show that $\mathbb{P}[Y \geq N] \leq \frac{2}{\varepsilon} \int_{0}^{\varepsilon}\left(1-g_{Y}(t)\right) d t$, for any random variable Y with $\mathbb{P}\left[Y \in \mathbb{N}_{0}\right]=1$ and any $N \in \mathbb{N}, \varepsilon>0$ with $\varepsilon^{N} \leq \frac{1}{2}$.)

Problem 3 (32pts). Let $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}_{0}}$ be an iid sequence with $\mathbb{P}\left[\varepsilon_{n}=1\right]=1-\mathbb{P}\left[\varepsilon_{n}=-1\right]=p \in\left(\frac{1}{2}, 1\right)$. We interpret $\left\{\varepsilon_{n}\right\}_{n \in \mathbb{N}_{0}}$ as outcomes of a series of gambles. A gambler starts with $Z_{0}>0$ dollars, and in each play wagers a certain portion of her wealth. More precisely, the wealth of the gambler at time $n \in \mathbb{N}$ is given by

$$
Z_{n}=Z_{0}+\sum_{k=1}^{n} C_{k} \varepsilon_{k}
$$

where $\left\{C_{n}\right\}_{n \in \mathbb{N}_{0}}$ is a predictable process such that $C_{k} \in\left[0, Z_{k-1}\right)$, for $k \in \mathbb{N}$. The goal of the gambler is to maximize the "return" on her wealth, i.e., to choose a strategy $\left\{C_{n}\right\}_{n \in \mathbb{N}_{0}}$ such that the expectation $\frac{1}{T} \mathbb{E}\left[\log \left(Z_{T} / Z_{0}\right)\right]$, where $T \in \mathbb{N}$ is some fixed time horizon, is the maximal possible.
(1) Define $\alpha=H\left(\frac{1}{2}\right)-H(p)$, where $H(p)=-p \log p-(1-p) \log (1-p)$ is the entropy function, and show that the process $\left\{W_{n}\right\}_{n \in \mathbb{N}_{0}}$ given by

$$
W_{n}=\log \left(Z_{n}\right)-\alpha n, \text { for } n \in \mathbb{N}_{0}
$$

is a supermartingale. Conclude that $\mathbb{E}\left[\log \left(Z_{T}\right)\right] \leq \log \left(Z_{0}\right)+\alpha T$, for any choice of $\left\{C_{n}\right\}_{n \in \mathbb{N}_{0}}$.
(2) Show that the upper bound above is attained for some strategy $\left\{C_{n}\right\}_{n \in \mathbb{N}_{0}}$.

