The University of Texas at Austin Department of Mathematics

The Preliminary Examination in Probability Part I

Aug 2011

Problem 1 (36pts). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $\{X_n\}_{n \in \mathbb{N}}$ be a sequence of random variables bounded in \mathcal{L}^1 . We say that $\{X_n\}_{n \in \mathbb{N}}$ converges to a random variable $X \in \mathcal{L}^1$ in the biting sense if, for each $\varepsilon > 0$, there exists $A_{\varepsilon} \in \mathcal{F}$ such that $\mathbb{P}[A_{\varepsilon}] > 1 - \varepsilon$ and $X_n \mathbf{1}_{A_{\varepsilon}} \to X \mathbf{1}_{A_{\varepsilon}}$ in \mathcal{L}^1 .

- (1) Show that the biting limit X of the sequence $\{X_n\}_{n\in\mathbb{N}}$ is a.s.-unique (provided it exists).
- (2) Show that convergence in \mathcal{L}^1 implies the biting convergence, but that the biting convergence does not necessarily imply convergence in \mathcal{L}^1 .
- (3) Show that he two concepts coincide for uniformly integrable sequences $\{X_n\}_{n\in\mathbb{N}}$.

Problem 2 (32pts). Let $\{X_n\}_{n\in\mathbb{N}}$ be a sequence of random variables such that $\mathbb{P}[X_n \in \mathbb{N}_0] = 1$, for all $n \in \mathbb{N}$; here $\mathbb{N}_0 = \{0, 1, 2, ...\}$. Show that for a random variable X with $\mathbb{P}[X \in \mathbb{N}_0] = 1$, the following are equivalent

- (1) $X_n \to X$ in distribution,
- (2) $\mathbb{P}[X_n = k] \to \mathbb{P}[X = k]$, for all $k \in \mathbb{N}_0$.
- (3) $g_{X_n}(t) \to g_X(t)$ for all $t \in [0, 1)$, where, for any Y, we define $g_Y(t) = \sum_{k \in \mathbb{N}_0} \mathbb{P}[Y = k] t^k$.

(*Hint:* For (3) \Rightarrow (1), use the ideas from the proof of the Continuity Theorem for weak convergence. To deal with tightness, show that $\mathbb{P}[Y \ge N] \le \frac{2}{\varepsilon} \int_0^{\varepsilon} (1 - g_Y(t)) dt$, for any random variable Y with $\mathbb{P}[Y \in \mathbb{N}_0] = 1$ and any $N \in \mathbb{N}, \varepsilon > 0$ with $\varepsilon^N \le \frac{1}{2}$.)

Problem 3 (32pts). Let $\{\varepsilon_n\}_{n\in\mathbb{N}_0}$ be an iid sequence with $\mathbb{P}[\varepsilon_n = 1] = 1 - \mathbb{P}[\varepsilon_n = -1] = p \in (\frac{1}{2}, 1)$. We interpret $\{\varepsilon_n\}_{n\in\mathbb{N}_0}$ as outcomes of a series of gambles. A gambler starts with $Z_0 > 0$ dollars, and in each play wagers a certain portion of her wealth. More precisely, the wealth of the gambler at time $n \in \mathbb{N}$ is given by

$$Z_n = Z_0 + \sum_{k=1}^n C_k \varepsilon_k,$$

where $\{C_n\}_{n\in\mathbb{N}_0}$ is a predictable process such that $C_k \in [0, Z_{k-1})$, for $k \in \mathbb{N}$. The goal of the gambler is to maximize the "return" on her wealth, i.e., to choose a strategy $\{C_n\}_{n\in\mathbb{N}_0}$ such that the expectation $\frac{1}{T}\mathbb{E}[\log(Z_T/Z_0)]$, where $T \in \mathbb{N}$ is some fixed time horizon, is the maximal possible.

(1) Define $\alpha = H(\frac{1}{2}) - H(p)$, where $H(p) = -p \log p - (1-p) \log(1-p)$ is the entropy function, and show that the process $\{W_n\}_{n \in \mathbb{N}_0}$ given by

$$W_n = \log(Z_n) - \alpha n$$
, for $n \in \mathbb{N}_0$

is a supermartingale. Conclude that $\mathbb{E}[\log(Z_T)] \leq \log(Z_0) + \alpha T$, for any choice of $\{C_n\}_{n \in \mathbb{N}_0}$. (2) Show that the upper bound above is attained for some strategy $\{C_n\}_{n \in \mathbb{N}_0}$.