The University of Texas at Austin

Department of Mathematics

Preliminary Examination in Probability
 Part II
 August, 2011

Problem 2.1. (35 points, Inverse of the 3-d Bessel Process). Consider a 3-dimensional Brownian Motion W starting at $W_{0}=(1,0,0)$ and denote by

$$
R_{t}:=\left\|W_{t}\right\|,
$$

and

$$
T:=\inf \left\{t \mid R_{t}=0\right\} .
$$

(1) Show that the process

$$
L_{t}=\frac{1}{R_{t}}, \quad 0 \leq t<T
$$

is a local martingale
(2) Show that $\mathbb{P}[T=\infty]=1$
(3) Sketch a brief argument (no complete computations needed) showing that L is actually a strict local martingale, which means that it is NOT a martingale (for $0 \leq t<\infty$).
Problem 2.2. (40 points) Consider a standard one -dimensional Brownian Motion W and denote by T_{b} the first hitting time of level b. We know that

$$
\begin{gathered}
\mathbb{P}\left[T_{b} \in d t\right]=\frac{|b|}{\sqrt{2 \pi t^{3}}} e^{-\frac{b^{2}}{2 t}} d t, t>0 \\
\mathbb{E}\left[e^{-\lambda T_{b}}\right]=e^{-|b| \sqrt{2 \lambda}}, \quad \lambda>0
\end{gathered}
$$

Let $\mu \in \mathbb{R}$ and consider the measure \mathbb{P}_{μ} under which the process

$$
W_{t}^{\mu}=W_{t}-\mu t
$$

is a Brownian Motion (so that the original W is a Brownian Motion with drift μ under \mathbb{P}_{μ}).
(1) compute $\mathbb{P}_{\mu}\left[T_{b} \in d t\right], t>0$
(2) compute $\mathbb{P}_{\mu}\left[T_{b}<\infty\right]$
(3) if $\mu>0$ and $W_{*}=\inf _{t \geq 0} W_{t}$, show that $-W_{*}$ has an exponential distribution with parameter 2μ under \mathbb{P}_{μ}.
Problem 2.3. (25 points) Consider a standard one dimensional Brownian Motion W and the random variable

$$
Y:=\int_{0}^{1} \sin t d W_{t} .
$$

Show that Y is Gaussian. Compute its mean and variance.

