PRELIM EXAM IN ALGEBRA, SPRING 2012

Part I

Do three of the following five problems.

1. Let p be a prime.

1a. Classify elements of the symmetric group S_{p} of order p.
1 b . Let G be a finite group and H be a subgroup of index p. Assume p is the smallest prime number that divides the order of G. Show that H is normal. [Hint: if H is not normal, how many conjugates will it have?]

2a. Show that any matrix in $\mathrm{GL}_{n}(\mathbb{C})$ of finite order is diagonalizable.
2 b. Let $G \subset \mathrm{GL}_{n}(\mathbb{C})$ be a finite abelian subgroup of the invertible n by n complex matrices. Show that G is conjugate to a subgroup of $\mathrm{GL}_{n}(\mathbb{C})$ whose elements are all diagonal matrices.
3. Show that, up to isomorphism, there are exactly four groups of order 170.

4a. Let A be an n by n matrix with entries in a field F, and suppose that the minimal polynomial of A is equal to the characteristic polynomial of A. Show that for any n by n matrix B with entries in F such that $B A=A B$, there exists a polynomial $P \in F[t]$ such that $B=P(A)$.
4b. Show that if the characteristic polynomial of A is not equal to the minimal polynomial of A, then there exists an n by n matrix B with entries in F such that $B A=A B$ but B is not equal to $P(A)$ for any polynomial P.
5. Let G be a p-group, and let H be a normal subgroup of G. Show that $H \cap Z(G)$ contains an element other than the identity.

Algebra Part II

1. Let F be a finite field of odd characteristic. Prove that the product of the nonzero elements of F is equal to -1 .
2. Let E be the splitting field of the polynomial $x^{5}-3$ over \mathbb{Q}.

2a. Determine the Galois group $\operatorname{Gal}(E / \mathbb{Q})$ as a group of permutations of the roots of $x^{5}-3$.
2 b . Prove that E is not a subfield of any cyclotomic extension of \mathbb{Q}.
3. Consider $f(x)=x^{4}+7 x+7$.

3a. Determine the degree of the splitting field of $f(x)$ over \mathbb{F}_{3}.
3b. Let F be the splitting field of $f(x)$ over \mathbb{Q}. Prove that $\operatorname{Gal}(F / \mathbb{Q}) \cong S_{4}$.
4. Let q be a prime power. Determine, in terms of q, the number of irreducible monic polynomials in $\mathbb{F}_{q}[t]$ of degree 6 .
5. Let $f \in \mathbb{Q}[t]$ be an irreducible polynomial of degree 5 , and let K be the splitting field of f over \mathbb{Q}.
5a. Suppose f has exactly three real roots. Show that $\operatorname{Gal}(K / \mathbb{Q})$ is isomorphic to S_{5}.
5 b . Now suppose f has exactly one real root. What can you say about $\operatorname{Gal}(K / \mathbb{Q})$?

