PRELIMINARY EXAMINATION IN ANALYSIS
 PART II - COMPLEX ANALYSIS
 JANUARY 6, 2012

(1) (a) What can you say about an entire function F that does not take any real value in $[-1,1]$? Justify your answer.
(b) What can you say about an entire function f whose real part is always less than its imaginary part? Justify your answer.
(2) Let Ω be a bounded, open, connected subset of \mathbb{C} and let $\phi: \Omega \rightarrow \Omega$ be an analytic function. Prove that if there exists a point $z_{0} \in \Omega$ such that

$$
\phi\left(z_{0}\right)=z_{0} \quad \text { and } \quad \phi^{\prime}\left(z_{0}\right)=1,
$$

then ϕ is linear.
(3) Let $\varepsilon>0$ and $\omega \in \mathbb{C}$. Show that the function $z \mapsto \sin (z)+\frac{1}{\omega+z}$ has infinitely many zeros in the strip $|\operatorname{Im} z|<\varepsilon$.
(4) If f is analytic in the disk $D=\{z \in \mathbb{C}:|z|<1\}$, prove that there is a sequence $\left\{z_{n}\right\}$ in D, approaching the boundary of D, such that the sequence $\left\{f\left(z_{n}\right)\right\}$ is bounded.
(5) Assume $g: \mathbb{R} \rightarrow \mathbb{C}$ is 2π-periodic and extends analytically to a complex open neighborhood of \mathbb{R}. Show that there exists a bounded analytic function f in the upper half plane, and a bounded analytic function h in the lower half plane, such that

$$
g(x)=\lim _{y \downarrow 0}[f(x+i y)-h(x-i y)], \quad x \in \mathbb{R} .
$$

