
PRELIMINARY EXAMINATION: APPLIED MATHEMATICS I
January 11, 2012, 1:00-2:30

Work all 3 of the following 3 problems.

1. State and provide proofs for Hölder and Minkowski inequalities in Lp(Ω) spaces, for 1 ≤ p ≤ ∞.

2. Let H be a Hilbert space and M a closed linear subspace. Let A : H → H be a bounded linear
operator with a bounded inverse.

(a) For a given fixed x ∈ H, show that there is a unique y ∈M such that

inf
z∈M
‖A(z − x)‖ = ‖A(y − x)‖.

This defines an operator P : H →M by Px = y. [Hint: Use the parallelogram law.]

(b) Show that
〈A∗A(Px− x), y〉 = 0 ∀y ∈M.

[Hint: Consider for λ ∈ F and y ∈M that ‖A(Px−x)‖2 ≤ ‖A(Px−x−λy)‖2, and find a good
choice for λ.]

(c) Show that P is bounded, with bounding constant ‖A‖ ‖A−1‖.

3. Let H be a separable Hilbert space with maximal orthonormal basis {uk}∞k=1, let Hn =
span{u1, . . . , un}, and let Pn denote the orthogonal projection of H onto Hn. Suppose that
A : H → H is bounded and linear and f ∈ H. If

PnAxn = Pnf

has a solution xn ∈ Hn such that
‖xn‖ ≤ α‖Pnf‖,

where α > 0 is independent of n, show that there is at least one solution to Ax = f .



PRELIMINARY EXAMINATION: APPLIED MATHEMATICS II
January 11, 2012, 2:40-4:10

Work all 3 of the following 3 problems.

1. Consider the bilinear form

B(u, v) = (∇u,∇v)L2(Ω) + (bu,∇v)L2(Ω) + (cu, v)L2(Ω)

(a) Let c be positive constant. Derive a relation between b and c to insure that the bilinear
form B is coercive on H1(Ω).

(b) Suppose b = 0. If c < 0, is B not coercive? Show that this is true on H1(Ω).
However, restricting how negative c may be, show that B is still coercive on H1

0 (Ω)

(c) Consider the Neumann boundary value problem{
−∇ · (∇u+ bu) + cu = f in Ω ,

(−∇u+ b u) · ν = g on ∂Ω ,

with ν = ν(x) the outer unit boundary normal vector at x ∈ ∂Ω. Identify Sobolev spaces and
set the corresponding variational formulation B(u, v) = 〈F, v〉 for some F (F depending on f
and g) so that problem has a unique solution u (justify your answer), and derive estimates for
the solution u showing its dependence on the coefficients b and c and the corresponding Sobolev
norms associated with the data f and g.

2. Use the contraction-mapping theorem to show that the Fredholm Integral Equation

f(x) = φ(x) + λ

∫ b

a
K(x, y)f(y) dy

has a unique solution f ∈ C([a, b]) provided that λ is sufficiently small, wherein φ ∈ C([a, b]) and
K ∈ C([a, b]× [a, b]))

3. Denote by L1
0(R3) be the set of all measurable functions that vanishes outside some compact

set in R3 and that are integrable, i.e.
∫
R3 |f |dx <∞. Let ρ ∈ L1

0(R3) ∩ L2(R3) be a given function
and ρ̃ ∈ D′(R3) be the generalized function corresponding to ρ.

(a) Show that the classical function

v(x) =

∫
R3

ρ(y)dy

4π|x− y|
, x ∈ R3 ,

is well defined in L1(R3)

(b) Show that the generalized function V ∈ D′(R3) corresponding to the classical function v(x)
defined above is a weak solution to the Poisson equation

−∆V = ρ̃(x), in R3.


