PRELIMINARY EXAMINATION: APPLIED MATHEMATICS I

January 11, 2012, 1:00-2:30
Work all 3 of the following 3 problems.

1. State and provide proofs for Hölder and Minkowski inequalities in $L^{p}(\Omega)$ spaces, for $1 \leq p \leq \infty$.
2. Let H be a Hilbert space and M a closed linear subspace. Let $A: H \rightarrow H$ be a bounded linear operator with a bounded inverse.
(a) For a given fixed $x \in H$, show that there is a unique $y \in M$ such that

$$
\inf _{z \in M}\|A(z-x)\|=\|A(y-x)\|
$$

This defines an operator $P: H \rightarrow M$ by $P x=y$. [Hint: Use the parallelogram law.]
(b) Show that

$$
\left\langle A^{*} A(P x-x), y\right\rangle=0 \quad \forall y \in M
$$

[Hint: Consider for $\lambda \in \mathbb{F}$ and $y \in M$ that $\|A(P x-x)\|^{2} \leq\|A(P x-x-\lambda y)\|^{2}$, and find a good choice for λ.]
(c) Show that P is bounded, with bounding constant $\|A\|\left\|A^{-1}\right\|$.
3. Let H be a separable Hilbert space with maximal orthonormal basis $\left\{u_{k}\right\}_{k=1}^{\infty}$, let $H_{n}=$ $\operatorname{span}\left\{u_{1}, \ldots, u_{n}\right\}$, and let P_{n} denote the orthogonal projection of H onto H_{n}. Suppose that $A: H \rightarrow H$ is bounded and linear and $f \in H$. If

$$
P_{n} A x_{n}=P_{n} f
$$

has a solution $x_{n} \in H_{n}$ such that

$$
\left\|x_{n}\right\| \leq \alpha\left\|P_{n} f\right\|
$$

where $\alpha>0$ is independent of n, show that there is at least one solution to $A x=f$.

PRELIMINARY EXAMINATION: APPLIED MATHEMATICS II

January 11, 2012, 2:40-4:10
Work all 3 of the following 3 problems.

1. Consider the bilinear form

$$
B(u, v)=(\nabla u, \nabla v)_{L_{2}(\Omega)}+(b u, \nabla v)_{L_{2}(\Omega)}+(c u, v)_{L_{2}(\Omega)}
$$

(a) Let c be positive constant. Derive a relation between b and c to insure that the bilinear form B is coercive on $H^{1}(\Omega)$.
(b) Suppose $b=0$. If $c<0$, is B not coercive? Show that this is true on $H^{1}(\Omega)$. However, restricting how negative c may be, show that B is still coercive on $H_{0}^{1}(\Omega)$
(c) Consider the Neumann boundary value problem

$$
\left\{\begin{aligned}
-\nabla \cdot(\nabla u+b u)+c u=f & \text { in } \Omega, \\
(-\nabla u+b u) \cdot \nu=g & \text { on } \partial \Omega,
\end{aligned}\right.
$$

with $\nu=\nu(x)$ the outer unit boundary normal vector at $x \in \partial \Omega$. Identify Sobolev spaces and set the corresponding variational formulation $B(u, v)=\langle F, v\rangle$ for some F (F depending on f and g) so that problem has a unique solution u (justify your answer), and derive estimates for the solution u showing its dependence on the coefficients b and c and the corresponding Sobolev norms associated with the data f and g.
2. Use the contraction-mapping theorem to show that the Fredholm Integral Equation

$$
f(x)=\phi(x)+\lambda \int_{a}^{b} K(x, y) f(y) d y
$$

has a unique solution $f \in C([a, b])$ provided that λ is sufficiently small, wherein $\phi \in C([a, b])$ and $K \in C([a, b] \times[a, b]))$
3. Denote by $L_{0}^{1}\left(\mathbb{R}^{3}\right)$ be the set of all measurable functions that vanishes outside some compact set in \mathbb{R}^{3} and that are integrable, i.e. $\int_{\mathbb{R}^{3}}|f| d x<\infty$. Let $\rho \in L_{0}^{1}\left(\mathbb{R}^{3}\right) \cap L^{2}\left(\mathbb{R}^{3}\right)$ be a given function and $\tilde{\rho} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$ be the generalized function corresponding to ρ.
(a) Show that the classical function

$$
v(x)=\int_{\mathbb{R}^{3}} \frac{\rho(y) d y}{4 \pi|x-y|}, \quad x \in \mathbb{R}^{3},
$$

is well defined in $L^{1}\left(\mathbb{R}^{3}\right)$
(b) Show that the generalized function $V \in \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)$ corresponding to the classical function $v(x)$ defined above is a weak solution to the Poisson equation

$$
-\Delta V=\tilde{\rho}(x), \quad \text { in } \mathbb{R}^{3} .
$$

