Numerical Analysis Prelim Exam: Part A

Jan, 2012

1. Let $f \in C^{\infty}(\mathbb{R})$, bounded with compact support, and

$$g(x) := f(x) + \frac{1}{10}\sin(10\pi x).$$

(a) Find an even polynomial K(x) satisfying

$$\int_{-1}^{1} x^{k} K(x) dx = \begin{cases} 1, & k = 0, \\ 0, & k = 1, 2, 3, \end{cases}$$

and $K(\pm 1) = 0$.

(b) For $\epsilon > 0$, define

$$K_{\epsilon}(x) := \begin{cases} \frac{1}{\epsilon} K(\frac{x}{\epsilon}), & -\epsilon \le x \le \epsilon, \\ 0, & \text{otherwise.} \end{cases}$$

Show that there is a constant C such that for sufficiently small ϵ ,

$$|f(x) - K_{\epsilon} * g(x)| \le C\epsilon^4.$$

- 2. Let $\theta \in (0, 1)$.
 - (a) Determine α, β , and γ such that the quadrature $\alpha f(1) + \beta f(\theta) + \gamma f(0)$ yields the exact value of

$$\int_0^1 f(x)dx$$

for all quadratic polynomials f(x).

(b) Define

$$f_{\theta}(x) = \begin{cases} 1, & \text{if } x \le \theta^2, \\ 0, & \text{otherwise.} \end{cases}$$

Show that with the above choice of α, β , and γ ,

$$\lim_{\theta \to 0^+} \left| \int_0^1 f_\theta(x) dx - \left(\alpha f_\theta(1) + \beta f_\theta(\theta) + \gamma f_\theta(0) \right) \right| = \infty.$$

3. Let A be a real, positive definite, self-adjoint matrix. Define the energy

$$F(y) := \frac{1}{2}(x-y)^T A(x-y).$$

Consider the iterative scheme

$$x^{n+1} = x^n - s_n r_n,$$

where

$$s_n := \frac{||r_n||^2}{r_n^T A r_n}, r_n := A x^n - b.$$
(1)

(a) Show that given x^n , the choice of s^n in (1) minimizes

$$E(x^{n+1}) := \frac{1}{2} (x^{n+1})^T A x^{n+1} - (x^{n+1})^T b.$$

(b) Show that $F(x^n)$ tends to 0 as n tends to ∞ , and therefore x^n converges to the solution of Ax = b.