Numerical Analysis Prelim Exam: Part A

Jan, 2012

1. Let $f \in C^{\infty}(\mathbb{R})$, bounded with compact support, and

$$
g(x):=f(x)+\frac{1}{10} \sin (10 \pi x) .
$$

(a) Find an even polynomial $K(x)$ satisfying

$$
\int_{-1}^{1} x^{k} K(x) d x= \begin{cases}1, & k=0 \\ 0, & k=1,2,3\end{cases}
$$

and $K(\pm 1)=0$.
(b) For $\epsilon>0$, define

$$
K_{\epsilon}(x):= \begin{cases}\frac{1}{\epsilon} K\left(\frac{x}{\epsilon}\right), & -\epsilon \leq x \leq \epsilon \\ 0, & \text { otherwise }\end{cases}
$$

Show that there is a constant C such that for sufficiently small ϵ,

$$
\left|f(x)-K_{\epsilon} * g(x)\right| \leq C \epsilon^{4} .
$$

2. Let $\theta \in(0,1)$.
(a) Determine α, β, and γ such that the quadrature $\alpha f(1)+\beta f(\theta)+\gamma f(0)$ yields the exact value of

$$
\int_{0}^{1} f(x) d x
$$

for all quadratic polynomials $f(x)$.
(b) Define

$$
f_{\theta}(x)= \begin{cases}1, & \text { if } x \leq \theta^{2} \\ 0, & \text { otherwise }\end{cases}
$$

Show that with the above choice of α, β, and γ,

$$
\lim _{\theta \rightarrow 0^{+}}\left|\int_{0}^{1} f_{\theta}(x) d x-\left(\alpha f_{\theta}(1)+\beta f_{\theta}(\theta)+\gamma f_{\theta}(0)\right)\right|=\infty
$$

3. Let A be a real, positive definite, self-adjoint matrix. Define the energy

$$
F(y):=\frac{1}{2}(x-y)^{T} A(x-y) .
$$

Consider the iterative scheme

$$
x^{n+1}=x^{n}-s_{n} r_{n}
$$

where

$$
\begin{equation*}
s_{n}:=\frac{\left\|r_{n}\right\|^{2}}{r_{n}^{T} A r_{n}}, r_{n}:=A x^{n}-b \tag{1}
\end{equation*}
$$

(a) Show that given x^{n}, the choice of s^{n} in (1) minimizes

$$
E\left(x^{n+1}\right):=\frac{1}{2}\left(x^{n+1}\right)^{T} A x^{n+1}-\left(x^{n+1}\right)^{T} b .
$$

(b) Show that $F\left(x^{n}\right)$ tends to 0 as n tends to ∞, and therefore x^{n} converges to the solution of $A x=b$.

