Numerical Analysis Prelim Exam: Part B

August, 2011

1. Consider the energy

$$
E(u):=\frac{1}{2} \int_{0}^{1}\left|u_{x}(x)\right|^{2} d x+\frac{\lambda}{2} \int_{0}^{1}(u(x)-f(x))^{2} d x, \lambda>0,
$$

defined for $u \in C^{2}([0,1] ; \mathbb{R}), f \in C([0,1] ; \mathbb{R})$, and $u(0)=u(1)=f(0)=f(1)=0$. Consider a discrete approximation of E as follows: $U=\left(u_{1}, u_{2}, \cdots, u_{N-1}\right)^{T}$,

$$
E_{h}(U):=\frac{1}{2} \sum_{j=1}^{N-1}\left|D^{+} u_{j}\right|^{2} h+\frac{\lambda}{2} \sum_{j=1}^{N-1}\left|u_{j}-f_{j}\right|^{2} h,
$$

where $h=1 / N, u_{0}=u_{N}=0, D_{+} u_{j}=\left(u_{j+1}-u_{j}\right) / h$, and $f_{j}=f(j h)$.
(a) Derive the linear system

$$
\begin{equation*}
A U=b \tag{1}
\end{equation*}
$$

whose solution minimizes E_{h}.
(b) Derive the Gauss-Seidel method for this linear system and show that the iteration method will converge.
(c) Does the solution of (1) approximate the minimizer of E ? Justify your answer.
2. Consider

$$
u_{t}=a(x) u_{x}, \quad 0<x<1, t>0 .
$$

(a) Derive an upwind scheme for the equation. Determine a suitable boundary condition such that the PDE is well-posed. Introduce a suitable discrete L^{2} norm $\|\cdot\|_{h}$ and show that the upwind scheme is stable in this norm.
(b) Derive a discontinuous Galerkin method with piecewise linear basis functions for the equation above.
3. Derive the order of accuracy of the multistep method

$$
y_{n+1}+4 y_{n+1}-5 y_{n}=h\left(4 f_{n+1}+2 f_{n}\right), h>0
$$

for approximation of the solutions of $y^{\prime}=y$. Is the scheme convergent? Why?

