Preliminary Examination in Topology: January 2012

Differential Topology

Instructions: Do all three questions.

Time Limit: 90 minutes

1.

(a). Let $C \subset \mathbb{R}^2$ be a (smooth) simple closed curve in the plane and Ω the closed subset that it bounds. Thus Ω is a 2-manifold with boundary C. Assume the origin, $O \in \mathbb{R}^2$, lies in the interior of Ω .

Introduce polar coordinates r, θ and prove that

$$\operatorname{Area}(\Omega) = \int_C \frac{1}{2} r^2 d\theta$$

Discuss why the integrand is well-defined and describe the orientations you use.

- (b). Let f: S¹ → R² {0} be a smooth map. Define the winding number of f about 0 and prove that it equals ¹/_{2π} ∫_{S¹} f^{*}(dθ).
 (c). Suppose ω ∈ Ω¹(S²) is a 1-form with dw = 0. Let f : S¹ → S² be a smooth map.
- (c). Suppose $\omega \in \Omega^1(S^2)$ is a 1-form with dw = 0. Let $f : S^1 \to S^2$ be a smooth map. Prove $\int_{S^1} f^* \omega = 0$.
- **2.** Let $S^2 \subset E^3$ be the unit 2-sphere in Euclidean 3-space. Set $M = \{p_1, p_2 \in S^2 : p_1 \neq p_2\}$.
 - (a). Prove that M is a manifold. What is the dimension of M?
 - (b). Define $f: M \to R$ by setting $f(p_1, p_2)$ to be the **square** of the Euclidean distance between $p_1, p_2 \in S^2 \subset E^3$. Prove that f is smooth and that $S = f^{-1}(1/2) \subset M$ is a submanifold.
 - (c). What is the dimension of S? Is S compact? Bonus: Can you identify S?

3. Define $f : \mathbb{R}^4 \to \mathbb{R}^4$ to be f(x, y, z, w) = (x - y, 2y, 3z, 4w). f induces a map $\hat{f} : \mathbb{R}P^3 \to \mathbb{R}P^3$.

- (a). Find the fixed points of f.
- (b). Compute the local Lefschetz numbers of \hat{f} and the global Lefschetz number of \hat{f} .
- (c). Use the above to find the Euler characteristic of RP^3 .