Preliminary Examination in Algebra-Spring semester August 17, 2012, RLM 9.166, 2:40-4:10 p.m.

Do three of the following four problems.

- 1. Let K be a field of characteristic p > 2. Let K(x) be the field of rational functions with coefficients in K, and $\operatorname{Aut}(K(x)/K)$ the group of automorphisms $\varphi: K(x) \to K(x)$ that fix the subfield K.
 - (i) Show that there exist automorphisms σ and τ in $\operatorname{Aut} \big(K(x)/K \big)$ such that

$$\sigma(x) = x + 1$$
, and $\tau(x) = -x$.

(ii) Let $H \subseteq \operatorname{Aut}(K(x)/K)$ be the subgroup generated by σ and τ . Show that the subfield $K(x)^H \subseteq K(x)$ fixed by elements of H is K(y), where

$$y = (x^p - x)^2.$$

2. Suppose that f(x) is a monic, irreducible polynomial in $\mathbb{Q}[x]$, but f is not cyclotomic and f is not x. Let $\alpha_1, \alpha_2, \ldots, \alpha_L$ be the distinct roots of f in $\overline{\mathbb{Q}}$, where $\overline{\mathbb{Q}}$ is an algebraic closure of \mathbb{Q} . For each positive integer n define

$$g_n(x) = \prod_{l=1}^{L} (x - \alpha_l^n).$$

- (i) Prove that $g_n(x)$ is a positive integer power of a single irreducible polynomial in $\mathbb{Q}[x]$.
- (ii) Prove that if $1 \leq m < n$ then $g_m(x)$ and $g_n(x)$ have no common zeros in $\overline{\mathbb{Q}}$.
- 3. Let p be a prime and \mathbb{F}_p the finite field with p elements. Let $E = \mathbb{F}_p(x, y)$ and $F = \mathbb{F}_p(x^p, y^p)$, where x and y are independent indeterminants.
 - (i) Determine the degree of the field extension E/F.
 - (ii) Prove that E/F is not a simple extension by exhibiting infinitely many intermediate fields K such that $F \subseteq K \subseteq E$.
- **4.** Let K/\mathbb{Q} be a finite extension of fields. Assume that K is the splitting field for the polynomial $f(x) = x^4 3x^2 + 5$ over \mathbb{Q} .
 - (i) Prove that f(x) is irreducible in $\mathbb{Q}[x]$.
 - (ii) Prove that K has degree 8 over Q.
 - (iii) Determine the Galois group of the extension K/\mathbb{Q} and show how it acts on the roots of f.