PRELIMINARY EXAMINATION IN ANALYSIS
 Part II, Complex Analysis

August 20, 2012

1. Let f and g be entire analytic functions, and assume that $|f(z)|<|g(z)|$ whenever $|z|>1$. Show that f / g is a rational function.
2. Assume that f is analytic outside the disk $\{z \in \mathbb{C}:|z| \leq 1\}$ and takes its values inside this disk. Prove that $\left|f^{\prime}(2)\right| \leq \frac{1}{3}$.
3. Suppose that $\left\{f_{n}\right\}$ is a sequence of analytic functions on the unit disk $D=\{z \in \mathbb{C}$: $|z|<1\}$ that is Cauchy with respect to the $\mathrm{L}^{2}(D)$ metric. Show that $\left\{f_{n}\right\}$ converges uniformly on compact subsets of D to an analytic function $f: D \rightarrow \mathbb{C}$.
4. Prove that for any simply connected open subset of the complex plane, there exists an analytic function that cannot be analytically continued to a larger open domain.
