PRELIMINARY EXAMINATION: APPLIED MATHEMATICS I

August 22, 2012, 1:00-2:30

Work all 3 of the following 3 problems.

1. For $f \in L^2(0, 1)$, define

$$(Tf)(x) = \int_0^x f(s) \, ds$$
 for $x \in (0, 1)$.

(a) Show that T is a bounded linear operator on $L^2(0,1)$, and that $Tf \in C^0(0,1)$.

(b) Consider a sequence of functions f_n bounded in $L^2(0, 1)$. Show that there exist a subsequence n_p and a function $f \in L^2(0, 1)$ such that $(Tf_{n_p})(x)$ converges pointwise to (Tf)(x) for every x in (0, 1). [Hint: Use the weak convergence.]

(c) Show that T is compact in $L^2(0,1)$.

2. Uniform Boundedness.

(a) State the Uniform Boundedness Principle.

(b) Assume that x belongs to a normed space X and that for some $c \in [0, \infty)$ we have that $|l(x)| \leq c ||l||$ for all $l \in X^*$. Show that $||x|| \leq c$.

(c) Suppose that $S \subset X$ is such that

$$\sup_{x \in S} |l(x)| < \infty \quad \text{for all } l \in X^*.$$

Such sets S are called *weakly bounded*. Show that S is bounded in X.

- **3.** Let H be a Hilbert space, let $S \in B(H, H)$, and let $T \in B(H, H)$ be self-adjoint.
 - (a) Prove that if S is bounded below, then S is one-to-one and its range is closed in H.
 - (b) Prove that the point spectrum of T is real.
 - (c) Prove that $\lambda \in \rho(T)$, the resolvent, if and only if $T_{\lambda} = T \lambda I$ is bounded below.