PRELIMINARY EXAMINATION: APPLIED MATHEMATICS II

August 22, 2012, 2:40-4:10
Work all 3 of the following 3 problems.

1. Consider the Telegrapher's equation

$$
u_{t t}+2 u_{t}+u=c^{2} u_{x x} \quad \text { for } x \in \mathbb{R} \quad \text { and } t>0
$$

with $u(x ; 0)=f(x)$ and $u_{t}(x ; 0)=g(x)$ given in $L^{2}(\mathbb{R})$.
(a) Use the Fourier transform (in x only) and its inverse to find an explicit representation of the solution.
(b) Justify that your representation is indeed a solution.
(c) Show that the solution behaves like the solution of a damped wave equation; that is, the solution is a wave packet that is moving to the right with a given constant speed, and a wave packet that is moving to the left with the same speed. What determines these wave packets and their speed and damping rate?
2. Given $I=[0, b]$, consider the problem of finding $u: I \rightarrow \mathbb{R}$ such that

$$
\left\{\begin{align*}
u^{\prime}(s) & =g(s) f(u(s)), \quad \text { for a.e. } s \in I \tag{1}\\
u(0) & =\alpha
\end{align*}\right.
$$

where $\alpha \in \mathbb{R}$ is a given constant, $g \in L^{p}(I), p \geq 1$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ are given functions. We suppose f is Lipschitz continuous and satisfies $f(0)=0$.
(a) Consider the functional

$$
F(u)=\alpha+\int_{0}^{s} g(\sigma) f(u(\sigma)) d \sigma
$$

Show that F maps $C^{0}(I)$ into $C^{0}(I) \cap W^{1, p}(I)$. Moreover, show that $u \in C^{0}(I) \cap W^{1, p}(I)$ satisfies (1) if and only if it is a fixed point of F.
(b) Show that (1) has a unique solution $u \in C^{0}(I) \cap W^{1, p}(I)$ for any $g \in L^{p}(I)$ and $b>0$.
3. Let Ω be a domain with a smooth boundary. Consider the differential problem

$$
\begin{aligned}
p-\nabla \cdot a \nabla p-\nabla \cdot b \nabla q+d(p-q)=0 & \text { in } \Omega, \\
-\nabla \cdot c \nabla q+d(q-p)=f & \text { in } \Omega, \\
-(a \nabla p+b \nabla q) \cdot \nu=g & \text { on } \partial \Omega, \\
q=0 & \text { on } \partial \Omega,
\end{aligned}
$$

where a, b, c, and $d \geq 0$ are bounded, smooth functions, $f \in H^{-1}(\Omega)$, and $g \in H^{-1 / 2}(\partial \Omega)$. Moreover, assume that there is some $\gamma>0$ such that $a \geq \gamma, c \geq \gamma$, and $|b| \leq \gamma$.
(a) Define a suitable variational problem for the differential equations. Be sure to identify your function spaces for p, q, and the test functions.
(b) Show that there is a unique solution to the variational problem.

