The University of Texas at Austin
 Department of Mathematics

The Preliminary Examination in Probability

 Part I

 Part I}

Aug 23, 2012

Problem 1 (30pts). Let X and Y be two independent random variables with $X+Y \in \mathbb{L}^{1}$. Show that $X \in \mathbb{L}^{1}$.

Problem 2 (35pts). For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a sub- σ-algebra \mathcal{G} of \mathcal{F}, let \mathcal{G}^{\Perp} be the independent complement of \mathcal{G}, i.e.,

$$
\mathcal{G}^{\Perp}=\left\{X \in \mathcal{L}^{0}(\mathcal{F}): X \text { is independent of } \mathcal{G}\right\} .
$$

Show that independence behaves differently than orthogonality (absence of correlation) by constructing an example of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a sub- σ-algebra $\mathcal{G} \subseteq \mathcal{F}$ such that
(1) there exists $A \in \mathcal{F} \backslash \mathcal{G}$ with $0<\mathbb{P}[A]<1$, and
(2) \mathcal{G}^{\Perp} contains only a.s.-constant random variables.

Problem 3 (35pts). Let the stochastic process $\left\{X_{n}\right\}_{n \in \mathbb{N}_{0}}$ be constructed inductively as follows:

- $X_{0}=0$, and
- for $n \in \mathbb{N}$, and conditionally on $\mathcal{F}_{n-1}=\sigma\left(X_{0}, \ldots, X_{n-1}\right)$, we set
- if $X_{n-1}=0$, then $X_{n}=-1,0$ or 1 , with probabilities $\frac{1}{2 n}, 1-\frac{1}{n}$ and $\frac{1}{2 n}$, respectively,
- if $X_{n-1} \neq 0$, then $X_{n}=n X_{n-1}$ or 0 with probabilities $\frac{1}{n}, 1-\frac{1}{n}$.

Show that $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a martingale which converges to 0 in probability but not a.s.

