The University of Texas at Austin
Department of Mathematics

Preliminary Examination in Probability
 Part II
 August, 2012

Problem 2.1. (30 points) Let B a standard, one-dimensional Brownian motion. Denote by

$$
Z_{t}=e^{B_{t}-\frac{1}{2} t}, T_{b}=\inf \left\{t>0 \mid Z_{t}=b\right\} \text { and } Z^{*}=\sup _{t \geq 0} Z_{t}
$$

Compute
(1) $\mathbb{P}\left[T_{b}<\infty\right]$ for $b>1$
(2) the law of Z^{*} and the law of $1 / Z^{*}$

Problem 2.2. (30 points) Let X be a continuous semi-martingale, and X^{n} a sequence of continuous processes of bounded variation such that, for each t, we have

$$
\mathbb{P}\left[\lim _{n \rightarrow \infty} X_{t}^{n}=X_{t}\right]=1
$$

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function of class C^{1}, show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{t} f\left(X_{s}^{n}\right) d X_{s}^{n}=\int_{0}^{t} f\left(X_{s}\right) d X_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime}\left(X_{s}\right) d\langle X\rangle_{s},
$$

holds \mathbb{P}-a.s. for every $t \geq 0$.
Problem 2.3. (40 points, Brownian bridge) Let $\left(B_{t}\right)_{0 \leq t \leq 1}$ a standard one-dimensional Brownian motion (with time horizon $T=1$) and denote by $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ the (augmented) filtration generated by B. Denote by

$$
\mathcal{G}_{t}=\mathcal{F}_{t} \vee \sigma\left(B_{1}\right), \quad 0 \leq t \leq 1,
$$

a new filtration (where the value of the BM at terminal time $T=1$ is known at time t). Show that

$$
\begin{equation*}
\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{G}_{s}\right]=\frac{t-s}{1-s}\left(B_{1}-B_{s}\right) \tag{1}
\end{equation*}
$$

(2) the process $\left(\beta_{t}\right)_{0 \leq t \leq 1}$, defined by

$$
\beta_{t}=B_{t}-\int_{0}^{t} \frac{B_{1}-B_{s}}{1-s} d s
$$

is a \mathcal{G}_{t}-Brownian motion, independent of B_{1}
(3) Denote by

$$
X_{t}^{x}=x t+B_{t}-t B_{1}, \quad 0 \leq t \leq 1,
$$

(the Brownian bridge ending at x at time $T=1$).
Show that

$$
X_{t}^{x}=\int_{0}^{t} \frac{x-X_{s}^{x}}{1-s} d s+\beta_{t}, \quad 0 \leq t \leq 1
$$

Note: one can obtain the representation of the Brownian bridge in (3) from (2) by conditioning the BM on its teminal value.

