THE UNIVERSITY OF TEXAS AT AUSTIN DEPARTMENT OF MATHEMATICS

Preliminary Examination in Probability Part II August, 2012

Problem 2.1. (30 points) Let B a standard, one-dimensional Brownian motion. Denote by

$$Z_t = e^{B_t - \frac{1}{2}t}$$
, $T_b = \inf\{t > 0 | Z_t = b\}$ and $Z^* = \sup_{t > 0} Z_t$.

Compute

- (1) $\mathbb{P}[T_b < \infty]$ for b > 1
- (2) the law of Z^* and the law of $1/Z^*$

Problem 2.2. (30 points) Let X be a continuous semi-martingale, and X^n a sequence of continuous processes of bounded variation such that, for each t, we have

$$\mathbb{P}[\lim_{n\to\infty} X_t^n = X_t] = 1.$$

If $f: \mathbb{R} \to \mathbb{R}$ is a function of class C^1 , show that

$$\lim_{n\to\infty} \int_0^t f(X_s^n) dX_s^n = \int_0^t f(X_s) dX_s + \frac{1}{2} \int_0^t f'(X_s) d\langle X \rangle_s,$$

holds \mathbb{P} -a.s. for every $t \geq 0$.

Problem 2.3. (40 points, Brownian bridge) Let $(B_t)_{0 \le t \le 1}$ a standard one-dimensional Brownian motion (with time horizon T = 1) and denote by $(\mathcal{F}_t)_{0 \le t \le T}$ the (augmented) filtration generated by B. Denote by

$$\mathcal{G}_t = \mathcal{F}_t \vee \sigma(B_1), \quad 0 \le t \le 1,$$

a new filtration (where the value of the BM at terminal time T=1 is known at time t). Show that (1)

$$\mathbb{E}[B_t - B_s | \mathcal{G}_s] = \frac{t - s}{1 - s} (B_1 - B_s)$$

(2) the process $(\beta_t)_{0 \le t \le 1}$, defined by

$$\beta_t = B_t - \int_0^t \frac{B_1 - B_s}{1 - s} ds,$$

is a \mathcal{G}_t -Brownian motion, independent of B_1

(3) Denote by

$$X_t^x = xt + B_t - tB_1, \quad 0 \le t \le 1,$$

(the Brownian bridge ending at x at time T=1).

Show that

$$X_t^x = \int_0^t \frac{x - X_s^x}{1 - s} ds + \beta_t, \quad 0 \le t \le 1.$$

Note: one can obtain the representation of the Brownian bridge in (3) from (2) by conditioning the BM on its teminal value.