Preliminary Examination in Topology: August 2012 Differential Topology portion

Instructions: Do all three questions.
Time Limit: 90 minutes.
1a. Let $f: X \rightarrow Y$ be a submersion, and let $Z \subset Y$ be a submanifold (with $\partial X, \partial Y, \partial Z$ empty). Prove that $f^{-1}(Z)$ is a manifold.
b. Recall that one definition of $\mathbb{R} P^{k}$ is as the quotient of S^{k} by the antipodal map, with smooth structure defined so that the projection $p: S^{k} \rightarrow \mathbb{R} P^{k}$ is a local diffeomorphism. Suppose that k is odd and $Z_{1}, Z_{2} \subset \mathbb{R} P^{k}$ are compact submanifolds of positive dimension for which the oriented intersection number $I\left(Z_{1}, Z_{2}\right)$ is defined. Prove $I\left(Z_{1}, Z_{2}\right)=0$. (Hint: What conditions are guaranteed by well-definedness of $I\left(Z_{1}, Z_{2}\right)$?) Is the corresponding statement true for the mod-2 intersection number I_{2} ?
2. On \mathbb{R}^{2}, let $\omega=\left(\sin ^{4} \pi x+\sin ^{2} \pi(x+y)\right) d x-\cos ^{2} \pi(x+y) d y$.
a. Show that ω is closed.
b. Let η be the unique 1 -form on the torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ such that $p^{*} \eta=\omega$, where $p: \mathbb{R}^{2} \rightarrow T^{2}$ is projection. The parametrized curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by $\gamma(\theta)=(2 \theta,-3 \theta)$ is a line whose image $C \subset T^{2}$ is an oriented circle. Prove that $\int_{C} \eta \neq 0$. What is its sign?
c. Is η closed? Exact?
d. There is a standard embedding $i: T^{2} \rightarrow S^{1} \times S^{1} \subset \mathbb{R}^{2} \times \mathbb{R}^{2}$ (determined by the formula $i \circ p(x, y)=(\cos 2 \pi x, \sin 2 \pi x, \cos 2 \pi y, \sin 2 \pi y))$. Is there a closed form ζ on \mathbb{R}^{4} for which $i^{*} \zeta=\eta$? Justify your answer.
3. For the unit sphere $S^{n} \subset \mathbb{R}^{n+1}$, let $f: S^{n} \rightarrow S^{n}$ be the map reversing the signs of all but one coordinate,

$$
f\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(x_{0},-x_{1}, \ldots,-x_{n}\right)
$$

a. Compute the Lefschetz number $L(f)$.
b. For which values of n is f homotopic to a map without fixed points?

