Preliminary Examination in Topology: August 2012 Differential Topology portion

Instructions: Do all three questions.

Time Limit: 90 minutes.

1a. Let $f: X \to Y$ be a submersion, and let $Z \subset Y$ be a submanifold (with $\partial X, \partial Y, \partial Z$ empty). Prove that $f^{-1}(Z)$ is a manifold.

b. Recall that one definition of $\mathbb{R}P^k$ is as the quotient of S^k by the antipodal map, with smooth structure defined so that the projection $p: S^k \to \mathbb{R}P^k$ is a local diffeomorphism. Suppose that k is odd and $Z_1, Z_2 \subset \mathbb{R}P^k$ are compact submanifolds of positive dimension for which the oriented intersection number $I(Z_1, Z_2)$ is defined. Prove $I(Z_1, Z_2) = 0$. (*Hint:* What conditions are guaranteed by well-definedness of $I(Z_1, Z_2)$?) Is the corresponding statement true for the mod-2 intersection number I_2 ?

2. On \mathbb{R}^2 , let $\omega = (\sin^4 \pi x + \sin^2 \pi (x+y))dx - \cos^2 \pi (x+y) dy$.

a. Show that ω is closed.

b. Let η be the unique 1-form on the torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ such that $p^*\eta = \omega$, where $p: \mathbb{R}^2 \to T^2$ is projection. The parametrized curve $\gamma: \mathbb{R} \to \mathbb{R}^2$ given by $\gamma(\theta) = (2\theta, -3\theta)$ is a line whose image $C \subset T^2$ is an oriented circle. Prove that $\int_C \eta \neq 0$. What is its sign?

c. Is η closed? Exact?

d. There is a standard embedding $i: T^2 \to S^1 \times S^1 \subset \mathbb{R}^2 \times \mathbb{R}^2$ (determined by the formula $i \circ p(x, y) = (\cos 2\pi x, \sin 2\pi x, \cos 2\pi y, \sin 2\pi y))$). Is there a closed form ζ on \mathbb{R}^4 for which $i^*\zeta = \eta$? Justify your answer.

3. For the unit sphere $S^n \subset \mathbb{R}^{n+1}$, let $f \colon S^n \to S^n$ be the map reversing the signs of all but one coordinate,

$$f(x_0, x_1, \dots, x_n) = (x_0, -x_1, \dots, -x_n)$$

a. Compute the Lefschetz number L(f).

b. For which values of n is f homotopic to a map without fixed points?