Preliminary Examination in Algebra-Fall semester January 11, 2013, RLM 9.166, 1:00-2:30 p.m.

Do three of the following five problems.

1. Let G be a group.
(i) Show that if every nontrivial element of G has order 2 then G is abelian.
(ii) Show that (a) fails if we replace 2 by any larger prime p.
2. Prove that all groups of order less than 60 are solvable.
3. Let n be an integer greater than 3. Classify up to isomorphism all groups which arise as semidirect products of $\mathbb{Z} / 2^{n} \mathbb{Z}$ by $\mathbb{Z} / 2 \mathbb{Z}$.
4. Assume that S is an integral domain, and $R \subseteq S$ is a subring containing the identity element. Recall that an element a in S is integral over R if there exists a monic polynomial $f(x)$ in $R[x]$ such that f is not identically zero and $f(a)=0$. Then the integral closure of R in S is the subset of elements in S that are integral over R. An integral domain is called integrally closed if it is equal to its integral closure within its field of fractions.
(i) Show that a is integral over R if and only if $R[a]$ is a finitely generated R-submodule of S.
(ii) Suppose that R is a unique factorization domain. Prove that R is integrally closed.
(iii) Is the ring

$$
\{a+b \sqrt{-3}: a \in \mathbb{Z} \text { and } b \in \mathbb{Z}\}
$$

integrally closed? Give a proof to justify your answer.
5. Let A be an n by n matrix with entries in \mathbb{C}. Recall that for $\lambda \in \mathbb{C}$, the generalized λ-eigenspace V_{λ} of A is the set of all vectors $v \in \mathbb{C}^{n}$ such that, for some m, one has $(A-\lambda)^{m} v=0$.
(i) Show that $V_{\lambda} \neq 0$ if, and only if, λ is a root of the characteristic polynomial of A.
(ii) Show that \mathbb{C}^{n} is the direct sum of the spaces V_{λ}, as λ runs over the roots of the characteristic polynomial of A.

