Preliminary Examination in Algebra–Spring semester January 11, 2013, RLM 9.166, 2:40-4:10 p.m.

Do three of the following five problems.

- 1. Suppose F is a field and D is an integral domain containing F, which is finite-dimensional as a vector space over F. Show that D is a field.
- **2.** Let p be a prime number, k a field, and $\beta \neq 0$ an element of k.
 - (i) Prove that either the polynomial $f(x) = x^p \beta$ is irreducible in k[x], or there exists an element α in k such that $\beta = \alpha^p$.

(ii) Assume that f(x) is irreducible in k[x] and k contains a primitive pth root of unity. Show that $k(\alpha)$ is a splitting field for f(x).

- 3. Show that the following polynomials are irreducible over the given rings.
 - (i) The polynomial $x^4y^3 + 3x^5y + x^6 + x^4y + 27x^2 + xy + 3y + 6$ in $\mathbb{Q}[x, y]$.
 - (ii) The polynomial $x^{6}y + x^{2}y^{2} y^{2} + x^{2} + 3x + 2$ in $\mathbb{C}[x, y]$.
- 4. Let K be the splitting field over \mathbb{Q} of the polynomial $x^4 x^2 1$.
 - (i) Show that the Galois group of K over \mathbb{Q} is isomorphic to the dihedral group D_8 of order 8.
 - (ii) Give a complete description of the lattice of subfields of K.
- **5.** Let L/K be a separable extension of fields.

(i) Assume that for some integer $N \ge 1$ the inequality $[K(\alpha) : K] \le N$ holds for all elements α in L. Prove that $[L:K] \le N$.

(ii) Show that if L/K is a separable, infinite, normal extension of fields then $\operatorname{Aut}(L/K)$ is an infinite group.