Preliminary Examination in Algebra-Spring semester January 11, 2013, RLM 9.166, 2:40-4:10 p.m.

Do three of the following five problems.

1. Suppose F is a field and D is an integral domain containing F, which is finite-dimensional as a vector space over F. Show that D is a field.
2. Let p be a prime number, k a field, and $\beta \neq 0$ an element of k.
(i) Prove that either the polynomial $f(x)=x^{p}-\beta$ is irreducible in $k[x]$, or there exists an element α in k such that $\beta=\alpha^{p}$.
(ii) Assume that $f(x)$ is irreducible in $k[x]$ and k contains a primitive p th root of unity. Show that $k(\alpha)$ is a splitting field for $f(x)$.
3. Show that the following polynomials are irreducible over the given rings.
(i) The polynomial $x^{4} y^{3}+3 x^{5} y+x^{6}+x^{4} y+27 x^{2}+x y+3 y+6$ in $\mathbb{Q}[x, y]$.
(ii) The polynomial $x^{6} y+x^{2} y^{2}-y^{2}+x^{2}+3 x+2$ in $\mathbb{C}[x, y]$.
4. Let K be the splitting field over \mathbb{Q} of the polynomial $x^{4}-x^{2}-1$.
(i) Show that the Galois group of K over \mathbb{Q} is isomorphic to the dihedral group D_{8} of order 8 .
(ii) Give a complete description of the lattice of subfields of K.
5. Let L / K be a separable extension of fields.
(i) Assume that for some integer $N \geq 1$ the inequality $[K(\alpha): K] \leq N$ holds for all elements α in L. Prove that $[L: K] \leq N$.
(ii) Show that if L / K is a separable, infinite, normal extension of fields then $\operatorname{Aut}(L / K)$ is an infinite group.
