PRELIMINARY EXAMINATION IN ANALYSIS Part I, Real Analysis

January 9, 2013

- 1. Let $f \in L^{\infty}(\mu)$ be a nonnegative bounded μ -measurable function. Consider the set R_f consisting of all positive real numbers w such that $\mu(\{x : |f(x) w| \le \varepsilon\}) > 0$ for every $\varepsilon > 0$.
 - (a) Prove that R_f is compact.
 - (b) Prove that $||f||_{L^{\infty}} = \sup R_f$.
- **2.** Let f, f_1, f_2, \ldots be functions in $L^1([0,1])$ such that $f_k \to f$ pointwise almost everywhere. Show that $||f_k - f||_1 \to 0$ if and only if for every $\varepsilon > 0$ there exists $\delta > 0$, such that $|\int_A f_k| < \varepsilon$ for all k and all measurable set $A \subset [0,1]$ with measure $|A| < \delta$.
- **3.** Let p > 0, and denote by $L^p_{\text{weak}}(\mathbb{R})$ the space of all measurable functions $f : \mathbb{R} \to \mathbb{R}$ for which

$$N_p(f) = \sup_{\alpha > 0} \alpha^p \left| \left\{ x \in \mathbb{R}^n : |f(x)| > \alpha \right\} \right|$$

is finite. Prove that the simple functions are <u>not</u> dense in $L^p_{\text{weak}}(\mathbb{R})$, in the sense that there exists a function $f \in L^p_{\text{weak}}(\mathbb{R})$ such that $N_p(f - h_k) \to 0$ fails to hold for every sequence of simple functions h_1, h_2, \ldots

4. Let $f : \mathbb{R} \to \mathbb{R}$ be absolutely continuous with compact support, and let $g \in L^1(\mathbb{R})$. Prove that f * g is absolutely continuous on \mathbb{R} .